Answer:
The magnitude of the force required to move the electron through the given field is 2.203 N
Explanation:
Given;
The field strength of the electron, E = 1.375 x 10¹⁹ N/C
charge of electron, q = 1.602 x 10⁻¹⁹ C
The magnitude of the force required to move the electron through the given field is calculated as follows;
F = Eq
F = (1.375 x 10¹⁹ N/C) (1.602 x 10⁻¹⁹ C)
F = 2.203 N
Therefore, the magnitude of the force required to move the electron through the given field is 2.203 N
Answer:
6400 m
Explanation:
You need to use the bulk modulus, K:
K = ρ dP/dρ
where ρ is density and P is pressure
Since ρ is changing by very little, we can say:
K ≈ ρ ΔP/Δρ
Therefore, solving for ΔP:
ΔP = K Δρ / ρ
We can calculate K from Young's modulus (E) and Poisson's ratio (ν):
K = E / (3 (1 - 2ν))
Substituting:
ΔP = E / (3 (1 - 2ν)) (Δρ / ρ)
Before compression:
ρ = m / V
After compression:
ρ+Δρ = m / (V - 0.001 V)
ρ+Δρ = m / (0.999 V)
ρ+Δρ = ρ / 0.999
1 + (Δρ/ρ) = 1 / 0.999
Δρ/ρ = (1 / 0.999) - 1
Δρ/ρ = 0.001 / 0.999
Given:
E = 69 GPa = 69×10⁹ Pa
ν = 0.32
ΔP = 69×10⁹ Pa / (3 (1 - 2×0.32)) (0.001/0.999)
ΔP = 64.0×10⁶ Pa
If we assume seawater density is constant at 1027 kg/m³, then:
ρgh = P
(1027 kg/m³) (9.81 m/s²) h = 64.0×10⁶ Pa
h = 6350 m
Rounded to two sig-figs, the ocean depth at which the sphere's volume is reduced by 0.10% is approximately 6400 m.
The pyrite will be bigger, because its density is much lower.
I <em>do</em> know that the gold's volume will be 2.5906 (With a bunch more numbers after it)
50 divided by 19.3 = 2.5906
Answer:
The energy entering, reflecting, absorbed, and emitted by the earth system are the components of the Earth's radiation budget.
Explanation:
I hope this helps also I hope you have a great day and a new year.