Sound—energy<span> we can hear—travels only so far before it soaks away into the world around us. Until electrical </span>microphones<span>were invented in the late 19th century, there was no satisfactory way to send </span>sounds<span> to other places. You could shout, but that carried your words only a little further. You couldn't shout in New York City and make yourself heard in London. And you couldn't speak in 1715 and have someone listen to what you said a hundred years later! Remarkably, such things are possible today: by converting sound energy into electricity and information we can store, microphones make it possible to send the sounds of our voices, our music, and the noises in our world to other places and other times. How do microphones work? Let's take a closer look!</span>
Refractive index is the ration of sin i to sin r where i is the incident angle and r is the refraction angle.
Therefore, refractive index = sin 79.5 / sin 39.6
= 1.542
The refractive index may be given by the ratio of refractive index of medium 2 to refractive index of medium 1.
Therefore, 1.542 = n/1.0003
n = 1.5425
≈ 1.54
Medium 2 is sodium chloride, refractive index of 1.54
Answer:
» e. Electrons and protons
Explaination :
Electrons are negatively charged and protons are positively charged.
- The neutrons do not have a charge.