To find the horizontal distance multiple the horizontal velocity by the time. Since there is no given time it must be calculated using kinematic equation.
Y=Yo+Voyt+1/2at^2
0=.55+0+1/2(-9.8)t^2
-.55=-4.9t^2
sqrt(.55/4.9)=t
t=0.335 seconds
Horizontal distance
=0.335s*1.2m/s
=0.402 meters
Think of it like this, gravity has to pull harder on the heavier object to make them fall at the same rate , but doesn't have to pull as hard for the lighter object , thus is why sometimes heavier objects fall faster then lighter ones
Answer:
v = 0
Explanation:
This problem can be solved by taking into account:
- The equation for the calculation of the period in a spring-masss system
( 1 )
- The equation for the velocity of a simple harmonic motion
( 2 )
where m is the mass of the block, k is the spring constant, A is the amplitude (in this case A = 14 cm) and v is the velocity of the block
Hence

and by reeplacing it in ( 2 ):

In this case for 0.9 s the velocity is zero, that is, the block is in a position with the max displacement from the equilibrium.
Assuming that all the bullet’s energy heats the paraffin, its final temperature is 27.1 degree C. The correct option is D.
<h3>What is temperature?</h3>
Temperature is the degree of hotness and coldness of the material.
The energy of the bullet E = 1/2 mv²
E = 1/2 x 10 x 10⁻³ x (2000)²
E = 2 x 10⁴ J
This heat is used in heating the paraffin
E = m x c ΔT = m x c (Tfinal -Tinitial)
2 x 10⁴ J = 1 x 2.8 x 10³ x (Tfinal -20)
Tfinal = 27.1°C
Thus, the final temperature is 27.1 degree C. The correct option is D.
Learn more about temperature.
brainly.com/question/15267055
#SPJ1