1/4 = x/360
4×9 = 36 so 4 × 90 = 360
also multiply the numerator by 90 and you get
1/4 × 90/90 = 90/360
Answer:
9t^3 +t^2
Step-by-step explanation:
The perimeter of the figure is the sum of the lengths of the sides. The side lengths are represented by the polynomials shown, so the perimeter (P) is their sum:
P = (4t^3 -5) + (4t^3 -5) + (t^2 +9) + (t^3 -t^2 -11) + (t^2 +12)
Rearranging to group like terms:
P = (4t^3 +4t^3 +t^3) + (t^2 -t^2 +t^2) + (-5 -5 +9 -11 +12)
P = 9t^3 +t^2
The perimeter of the figure is represented by the polynomial 9t^3 +t^2.
Answer:
60
Step-by-step explanation:
let a = 22 / kg, and b = 12 / kg
a + b = 20 kg
22a + 12b = 15 * 20
12a + 12b = 240
10a = 60
216. All you have to do to find volume is to multiply the numbers. 12 x 18 = 216.
Answer:
In the given figure the point on segment PQ is twice as from P as from Q is. What is the point? Ans is (2,1).
Step-by-step explanation:
There is really no need to use any quadratics or roots.
( Consider the same problem on the plain number line first. )
How do you find the number between 2 and 5 which is twice as far from 2 as from 5?
You take their difference, which is 3. Now splitting this distance by ratio 2:1 means the first distance is two thirds, the second is one third, so we get
4=2+23(5−2)
It works completely the same with geometric points (using vector operations), just linear interpolation: Call the result R, then
R=P+23(Q−P)
so in your case we get
R=(0,−1)+23(3,3)=(2,1)
Why does this work for 2D-distances as well, even if there seem to be roots involved? Because vector length behaves linearly after all! (meaning |t⋅a⃗ |=t|a⃗ | for any positive scalar t)
Edit: We'll try to divide a distance s into parts a and b such that a is twice as long as b. So it's a=2b and we get
s=a+b=2b+b=3b
⇔b=13s⇒a=23s