<span>In blues musicians also often refer to chord progressions using Roman numerals, as this facilitates transposing a song to a new key. For example, rock and blues musicians often think of the 12 bar blues as consisting of I, IV and V chords.
Thus a simple version of the 12 bar blues might be expressed as I/I/I/I IV/IV/I/I V/IV/I/I. By thinking of this blues progression in Roman numerals, a backup band or rhythm section could be instructed by a band leader to do the chord progression in any key.
For example if the band leader asked the band to play this chord progression in the key of C Major, the chords would be C/C/C/C F/F/C/C G/F/C/C.</span>
The first thing you should do for this case is to find the horizontal and vertical components of the forces acting on the body.
We have then:
Horizontal = 9-9.2cos (58) = 4.124742769 N.
Vertical = 9.2sin (58) = 7.802042485 N
Then, the resulting net force is:
F = √ ((4.124742769) ^ 2 + (7.802042485) ^ 2) = 8.825268826 N
Then by definition:
F = m * a
Clearing the acceleration:
a = F / m
a = (8.825268826) / (3.0) = 2.941756275 m / s ^ 2
answer:
The magnitude of the body's acceleration is
2.941756275 m / s ^ 2
Answer:
<em>The grapefruit dropped 2.54 m and hit the ground at 7.06 m/s</em>
Explanation:
<u>Free Fall Motion
</u>
A free-falling object falls under the sole influence of gravity. Any object that is being acted upon only by the force of gravity is said to be in a state of free fall. Free-falling objects do not encounter air resistance.
If an object is dropped from rest in a free-falling motion, it falls with a constant acceleration called the acceleration of gravity, which value is 
The final velocity of a free-falling object after a time t is given by:
vf=g.t
The distance traveled by a dropped object is:

Given a grapefruit free falls from a tree and hits the ground t=0.72 s later, we can calculate the height it fell from:

y = 2.54 m
The final speed is computed below:

vf = 7.06 m/s
The grapefruit dropped 2.54 m and hit the ground at 7.06 m/s
<span>Galileo first studied the Milky Way through his telescope in January, 1610 not 1909. Until his observations, the Milky Way was thought to be a band of wispy whitish clouds passing through the heavens. To Galileo's amazement, instead of seeing just a nebula (the Greek work for cloud) the milky wisps resolved into innumerable tiny stars, so crowded together that, without the aid of a telescope, the light from those stars simply blended together. </span>
My hypothesis is the water would change color and starts to boil or it could be an experiment that may glow up in the dark.