1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Snowcat [4.5K]
2 years ago
8

A boy is pulling a cart by a force of 100N. The frictional force experienced by the cart is 20N. The force causing the motion of

the cart is:
1. 100N
2. 120N
3. 80N
4. 5N
Please give step by step explanation.​
Physics
1 answer:
Serga [27]2 years ago
4 0

Answer:

3 is right i guss look : 100N-20N=80N

You might be interested in
You kick a ball with a speed of 14 m/s at an angle of 51°. How far away does the ball land?
In-s [12.5K]
-- The vertical component of the ball's velocity is 14 sin(<span>51°) = 10.88 m/s

-- The acceleration of gravity is 9.8 m/s².

-- The ball rises for 10.88/9.8 seconds, then stops rising, and drops for the
same amount of time before it hits the ground.

-- Altogether, the ball is in the air for (2 x 10.88)/(9.8) = 2.22 seconds
==================================

-- The horizontal component of the ball's velocity is  14 cos(</span><span>51°) = 8.81 m/s

-- At this speed, it covers a horizontal distance of (8.81) x (2.22) = <em><u>19.56 meters</u></em>
before it hits the ground.


As usual when we're discussing this stuff, we completely ignore air resistance.
</span>
4 0
3 years ago
Read 2 more answers
Difference between kilogram and kilometre in points​
skelet666 [1.2K]

Answer:

Kilogram(kg) is the SI unit for mass while kilometre(km) is a unit for length. They are both similar in that they are 10^3 of a unit, thus kilo. As kilogram represents mass, it is a measure of how much matter is present in an object. While kilometre is a measure of distance/how long or short an object is.

7 0
3 years ago
List five situations in which temporary wiring would be used
Nimfa-mama [501]

an emergency

building a test circuit

temp joining components

8 0
3 years ago
A circular ring with area 4.45 cm2 is carrying a current of 13.5 A. The ring, initially at rest, is immersed in a region of unif
Gwar [14]

Answer:

a) ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ ) N.m

b) ΔU = -0.000747871 J

c)  w = 47.97 rad / s

Explanation:

Given:-

- The area of the circular ring, A = 4.45 cm^2

- The current carried by circular ring, I = 13.5 Amps

- The magnetic field strength, vec ( B ) = (1.05×10−2T).(12i^+3j^−4k^)

- The magnetic moment initial orientation, vec ( μi ) = μ.(−0.8i^+0.6j^)  

- The magnetic moment final orientation, vec ( μf ) = -μ k^

- The inertia of ring, T = 6.50×10^−7 kg⋅m2

Solution:-

- First we will determine the magnitude of magnetic moment ( μ ) from the following relation:

                    μ = N*I*A

Where,

           N: The number of turns

           I : Current in coil

           A: the cross sectional area of coil

- Use the given values and determine the magnitude ( μ ) for a single coil i.e ( N = 1 ):

                    μ = 1*( 13.5 ) * ( 4.45 / 100^2 )

                    μ = 0.0060075 A-m^2

- From definition the torque on the ring is the determined from cross product of the magnetic moment vec ( μ ) and magnetic field strength vec ( B ). The torque on the ring in initial position:

             vec ( τi ) = vec ( μi ) x vec ( B )

              = 0.0060075*( -0.8 i^ + 0.6 j^ ) x 0.0105*( 12 i^ + 3 j^ -4 k^ )

              = ( -0.004806 i^ + 0.0036045 j^ ) x ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

- Perform cross product:

          \left[\begin{array}{ccc}i&j&k\\-0.004806&0.0036045&0\\0.126&0.0315&-0.042\end{array}\right]  = \left[\begin{array}{ccc}-0.00015139\\-0.00020185\\-0.00060556\end{array}\right] \\\\

- The initial torque ( τi ) is written as follows:

           vec ( τi ) = ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ )

           

- The magnetic potential energy ( U ) is the dot product of magnetic moment vec ( μ ) and magnetic field strength vec ( B ):

- The initial potential energy stored in the circular ring ( Ui ) is:

          Ui = - vec ( μi ) . vec ( B )

          Ui =- ( -0.004806 i^ + 0.0036045 j^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Ui = -[( -0.004806*0.126 ) + ( 0.0036045*0.0315 ) + ( 0*-0.042 )]

          Ui = - [(-0.000605556 + 0.00011)]

          Ui = 0.000495556 J

- The final potential energy stored in the circular ring ( Uf ) is determined in the similar manner after the ring is rotated by 90 degrees with a new magnetic moment orientation ( μf ) :

          Uf = - vec ( μf ) . vec ( B )

          Uf = - ( -0.0060075 k^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Uf = - [( 0*0.126 ) + ( 0*0.0315 ) + ( -0.0060075*-0.042 ) ]

          Uf = -0.000252315 J

- The decrease in magnetic potential energy of the ring is arithmetically determined:

          ΔU = Uf - Ui

          ΔU = -0.000252315 - 0.000495556  

          ΔU = -0.000747871 J

Answer: There was a decrease of ΔU = -0.000747871 J of potential energy stored in the ring.

- We will consider the system to be isolated from any fictitious forces and gravitational effects are negligible on the current carrying ring.

- The conservation of magnetic potential ( U ) energy in the form of Kinetic energy ( Ek ) is valid for the given application:

                Ui + Eki = Uf + Ekf

Where,

             Eki : The initial kinetic energy ( initially at rest ) = 0

             Ekf : The final kinetic energy at second position

- The loss in potential energy stored is due to the conversion of potential energy into rotational kinetic energy of current carrying ring.    

               -ΔU = Ekf

                0.5*T*w^2 = -ΔU

                w^2 = -ΔU*2 / T

Where,

                w: The angular speed at second position

               w = √(0.000747871*2 / 6.50×10^−7)

              w = 47.97 rad / s

6 0
3 years ago
The position-time graph for a bug crawling along a line is shown in item 4 below. Determine whether the velocity is positive, ne
Naddika [18.5K]

Answer: The velocity at different marked time points are given as

t1 = -

t2 = +

t3 = +

t4 = -

t5 = 0

Explanation:

The slope of the tangent of the curve indicates the instantaneous velocity. So if the slope of the tangent is positive, that Is, the tangent makes a positive angle (above the horizontal axis) with the horizontal

axis, then the velocity at this point is positive, and if the slope of the tangent is negative, that is the tangent makes a negative angle with the horizontal axis (below the horizontal axis), then the velocity at this point is negative.

When the tangent of the line is parallel to the horizontal axis, the velocity is 0.

From the position-time graph attached, the sign on the instantaneous velocity for each time marked on the graph is given below

t1 = -

t2 = +

t3 = +

t4 = -

t5 = 0

QED!

5 0
3 years ago
Other questions:
  • Which element causes a star to go through a high mass cycle
    10·1 answer
  • Why is it important to keep the muzzle of a firearm pointed in a safe direction, even though the firearm's safety is engaged?
    8·1 answer
  • QUESTION 10
    11·1 answer
  • 0.55 kg mouse moving E at 60m s or a 900 kg elephant moving E at 0.03m Which has the most momentum?
    14·1 answer
  • Whats wavelength? pls explain in 8th grade form pls
    14·1 answer
  • Vary the sled’s height and mass. Observe the effect of each change on the potential energy of the sled.
    6·1 answer
  • What is the speed of a wave with a frequency of 100 hz and a wave length of .5 m?
    5·2 answers
  • Hii please help i’ll give brainliest!!
    7·1 answer
  • State the first law of thermodynamics​
    10·2 answers
  • A 63.3 kg wood board is resting on very smooth ice in the middle of a frozen lake. A 35.7 kg boy stands at one end of the board.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!