1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Snowcat [4.5K]
2 years ago
8

A boy is pulling a cart by a force of 100N. The frictional force experienced by the cart is 20N. The force causing the motion of

the cart is:
1. 100N
2. 120N
3. 80N
4. 5N
Please give step by step explanation.​
Physics
1 answer:
Serga [27]2 years ago
4 0

Answer:

3 is right i guss look : 100N-20N=80N

You might be interested in
Fluid pressure changes with depth are assumed to be linear. Which statement best explains why this does not hold true for atmosp
ankoles [38]

Answer:

Explanation:

Pressure due to fluid is directly proportional to the depth of fluid, density of the fluid and the value of acceleration due to gravity.

P = h d g

Where, h is the depth, d be the density and g be the acceleration due to gravity.

If we talk about teh atmospheric pressure, the density of air goes on decreasing as we go up and up. o we cannot say that it is directly depends only on the depth of air, it also depends on the changing density of air.

4 0
3 years ago
A 44-cm-diameter water tank is filled with 35 cm of water. A 3.0-mm-diameter spigot at the very bottom of the tank is opened and
cricket20 [7]

Answer:

The frequency f = 521.59 Hz

The rate at which the frequency is changing = 186.9 Hz/s

Explanation:

Given that :

Diameter of the tank = 44 cm

Radius of the tank = \frac{d}{2} =\frac{44}{2} = 22 cm

Diameter of the spigot = 3.0 mm

Radius of the spigot = \frac{d}{2} =\frac{3.0}{2} = 1.5 mm

Diameter of the cylinder = 2.0 cm

Radius of the cylinder = \frac{d}{2} = \frac{2.0}{2} = 1.0 cm

Height of the cylinder = 40 cm = 0.40 m

The height of the water in the tank from the spigot = 35 cm = 0.35 m

Velocity at the top of the tank = 0 m/s

From the question given, we need to consider that  the question talks about movement of fluid through an open-closed pipe; as such it obeys Bernoulli's Equation and the constant discharge condition.

The expression for Bernoulli's Equation is as follows:

P_1+\frac{1}{2}pv_1^2+pgy_1=P_2+\frac{1}{2}pv^2_2+pgy_2

pgy_1=\frac{1}{2}pv^2_2 +pgy_2

v_2=\sqrt{2g(y_1-y_2)}

where;

P₁ and P₂ = initial and final pressure.

v₁ and v₂ = initial and final fluid velocity

y₁ and y₂ = initial and final height

p = density

g = acceleration due to gravity

So, from our given parameters; let's replace

v₁ = 0 m/s ; y₁ = 0.35 m ; y₂ = 0 m ; g = 9.8 m/s²

∴ we have:

v₂ = \sqrt{2*9.8*(0.35-0)}

v₂ = \sqrt {6.86}

v₂ = 2.61916

v₂ ≅ 2.62 m/s

Similarly, using the expression of the continuity for water flowing through the spigot into the cylinder; we have:

v₂A₂ = v₃A₃

v₂r₂² = v₃r₃²

where;

v₂r₂ = velocity of the fluid and radius at the spigot

v₃r₃ = velocity of the fluid and radius at the cylinder

v_3 = \frac{v_2r_2^2}{v_3^2}

where;

v₂ = 2.62 m/s

r₂ = 1.5 mm

r₃ = 1.0 cm

we have;

v₃ = (2.62  m/s)* (\frac{1.5mm^2}{1.0mm^2} )

v₃ = 0.0589 m/s

∴ velocity  of the fluid in the cylinder =  0.0589 m/s

So, in an open-closed system we are dealing with; the frequency can be calculated by using the expression;

f=\frac{v_s}{4(h-v_3t)}

where;

v_s = velocity of sound

h = height of the fluid

v₃ = velocity  of the fluid in the cylinder

f=\frac{343}{4(0.40-(0.0589)(0.4)}

f= \frac{343}{0.6576}

f = 521.59 Hz

∴ The frequency f = 521.59 Hz

b)

What are the rate at which the frequency is changing (Hz/s) when the cylinder has been filling for 4.0 s?

The rate at which the frequency is changing is related to the function of time (t) and as such:

\frac{df}{dt}= \frac{d}{dt}(\frac{v_s}{4}(h-v_3t)^{-1})

\frac{df}{dt}= -\frac{v_s}{4}(h-v_3t)^2(-v_3)

\frac{df}{dt}= \frac{v_sv_3}{4(h-v_3t)^2}

where;

v_s (velocity of sound) = 343 m/s

v₃ (velocity  of the fluid in the cylinder) = 0.0589 m/s

h (height of the cylinder) = 0.40 m

t (time) = 4.0 s

Substituting our values; we have ;

\frac{df}{dt}= \frac{343*0.0589}{4(0.4-(0.0589*4.0))^2}

= 186.873

≅ 186.9 Hz/s

∴ The rate at which the frequency is changing = 186.9 Hz/s  when the cylinder has been filling for 4.0 s.

8 0
3 years ago
Every few hundred years most of the planets line up on the same side of the Sun.(Figure 1)Calculate the total force on the Earth
mylen [45]

Answer: 3.7 \times 10^{-4} N

Explanation:

The gravitational pull between two object is given by:

F = G\frac{Mm}{r^2}

Where M and m are the masses of the object, r is the distance between the masses and G = 6.67× 10⁻¹¹ m³kg⁻¹ s⁻² is the gravitational constant.

We have to calculate the net force on Earth due to Venus, Jupiter and Saturn when they are in one line. It means when they are the closest distance.

F_{net] = G\frac{M_eM_v}{r_v^2}+G\frac{M_eM_j}{r_j^2}+G\frac{M_eM_s}{r_s^2}

Mass of Earth, Me = 5.98 × 10²⁴ kg

Mass of Venus, Mv = 0.815 Me

Mass of Jupiter, Mj = 318 Me

Mass of Saturn, Ms = 95.1 Me

closest distance between Earth and Venus, rv = 38 × 10⁶ km = 0.25 AU

closest distance between Jupiter and Earth, rj = 588 × 10⁶ km = 3.93 AU

closest distance between Earth and Saturn, rs = 1.2 × 10⁹ km = 8.0 AU

where 1 AU = 1.5 × 10¹¹ m

Inserting the values:

F_{net} = G\frac{M_e\times 0.815 M_e}{(0.25AU)^2}+G\frac{M_e\times 318 M_e}{(3.93AU)^2}+G\frac{M_e\times 95.1 M_e}{(8.0AU)^2}\\ \Rightarrow F_{net} = \frac{(GM_e^2)}{(1AU)^2}(\frac{0.815}{0.25^2}+\frac{318}{3.93^2}+\frac{95.1}{8.0^2})=\frac{6.67\times 10^{-11} \times (5.98\times 10^{24})^2}{(1.5\times 10^{11})^2}(35.1) = 3.7 \times 10^{-4} N

4 0
3 years ago
Read 2 more answers
The figure below shows a man in a boat on a lake. The man's mass is 74 kg, and the boat's is 135 kg. The man and boat are initia
vazorg [7]

The velocity of the boat after the package is thrown is 0.36 m/s.

<h3>Final velocity of the boat</h3>

Apply the principle of conservation of linear momentum;

Pi = Pf

where;

  • Pi is initial momentum
  • Pf is final momentum

v(74 + 135) = 15 x 5

v(209) = 75

v = 75/209

v = 0.36 m/s

Thus, the velocity of the boat after the package is thrown is 0.36 m/s.

Learn more about velocity here: brainly.com/question/6504879

#SPJ1

7 0
2 years ago
A net force of 24 N is acting on a 4.0-kg object. Find the acceleration in m/s2.
Inessa [10]

Hi there!

We can use Newton's Second Law:
\Sigma F = ma

ΣF = Net force (N)
m = mass (kg)
a = acceleration (m/s²)

We can rearrange the equation to solve for the acceleration.

a = \frac{\Sigma F}{m}\\\\a = \frac{24}{4} = \boxed{6 \frac{m}{s^2}}

6 0
2 years ago
Other questions:
  • A golfer starts with the club over her head and swings it to reach maximum speed as it contacts the ball. Halfway through her sw
    5·1 answer
  • What is the major factor controlling how levers work?
    7·1 answer
  • Carbon-14 is a naturally-occuring, stable isotope that is commonly used is scientific studies as a tracer and to date artifacts.
    13·2 answers
  • list all the storage forms of energy that forms of energy that you are familiar with. for each storage form, give an example of
    15·1 answer
  • Help ASAP plssssssssss
    11·1 answer
  • What is the energy equivalent of 5.0kg of mass?
    7·2 answers
  • What is the mass of an object with a momentum of 250 kgm/s and a velocity of 5 m/s?
    8·2 answers
  • What is the prefix notation of 0.0000738?​
    11·2 answers
  • What are ribosomes?<br><br> I'm tired. But I have insomnia. Big ugh moment. &lt;.&lt;.
    13·1 answer
  • a wave in which particles of the medium vibrate at right angles to the direction that the wave travels is called?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!