-- The acceleration due to gravity is 32.2 ft/sec² . That means that the
speed of a falling object increases by an additional 32.2 ft/sec every second.
-- If dropped from "rest" (zero initial speed), then after falling for 4 seconds,
the object's speed is (4.0) x (32.2) = <em>128.8 ft/sec</em>.
-- 128.8 ft/sec = <em>87.8 miles per hour</em>
Now we can switch over to the metric system, where the acceleration
due to gravity is typically rounded to 9.8 meters/sec² .
-- Distance = (1/2) x (acceleration) x (time)²
D = (1/2) (9.8) x (4)² =<em> 78.4 meters</em>
-- At 32 floors per 100 meters, 78.4 meters = dropped from the <em>25th floor</em>.
The 5 points are certainly appreciated, but I do wish they were Celsius points.
Answer:

Explanation:
From the concept of fluids mechanics we know that if a tank has a hole at the bottom, the equation that we need to use is:

Since we know gravity and its hight

Calm, sunny days with wind moving away from the center.
gamma radiation and heat flares from the sun, they use refelective gold sheets
Answer:
The formula comes from Lorentz force law which includes both the electric and magnetic field. If the electric field is zero, the force law for just the magnetic field is <u>F=q(ν×B</u>) . Here, F is force and is a vector because the force acts in a direction. q is the charge of the particle. v is velocity and is a vector because the particle is moving in some direction. B is the magnetic flux density.
We can derive an expression for the magnetic force on a current by taking a sum of the magnetic forces on individual charges. (The forces add because they are in the same direction.) The force on an individual charge moving at the drift velocity vd. Since the magnitude of B is constant at every line element of the loop (circle) and it dot product with the line element is B dl everywhere, therefore
∮B dl=μ0 I
B ∮dl=μ0 I
B 2πr=μ0 I
B=μ02πr Id=μ0/4π I dl×rr3
Since, r can be written as r=(rcosθ,rsinθ,z) and dl as dl=(dl,0,0) And now, if we take the cross product we would get
dl×r=−z dlj^+rsinθk^
and therefore the magnitude of dB is equal to
dB=μ0/4π I |dl×r|/r3=μ0/4π I z2+r2sin2θ−−−−−−−−−−√dl/r3
Thus, magnetic field is depending on r,θ,z.
Learn more about Force here-
brainly.com/question/2855467
#SPJ4