Answer:
<u>B. the stars of spectral type A and F are considered reasonably to have habitable planets but much less likely to have planets with complex plant - or animal - like life.</u>
Explanation:
The appropriate spectral range for habitable stars is considered to be "late F" or "G", to "mid-K" or even late "A". <em>This corresponds to temperatures of a little more than 7,000 K down to a little less than 4,000 K</em> (6,700 °C to 3,700 °C); the Sun, a G2 star at 5,777 K, is well within these bounds. "Middle-class" stars (late A, late F, G , mid K )of this sort have a number of characteristics considered important to planetary habitability:
• They live at least a few billion years, allowing life a chance to evolve. <em>More luminous main-sequence stars of the "O", "B", and "A" classes usually live less than a billion years and in exceptional cases less than 10 million.</em>
• They emit enough high-frequency ultraviolet radiation to trigger important atmospheric dynamics such as ozone formation, but not so much that ionisation destroys incipient life.
• They emit sufficient radiation at wavelengths conducive to photosynthesis.
• Liquid water may exist on the surface of planets orbiting them at a distance that does not induce tidal locking.
<u><em>Thus , the stars of spectral type A and F are considered reasonably to have habitable planets but much less likely to have planets with complex plant - or animak - like life.</em></u>
It creates a white crystal salt MgF2
Explanation:
According to Rydberg's formula, the wavelength of the balmer series is given by:

R is Rydberg constant for an especific hydrogen-like atom, we may calculate R for hydrogen and deuterium atoms from:

Here,
is the "general" Rydberg constant,
is electron's mass and M is the mass of the atom nucleus
For hydrogen, we have,
:

Now, we calculate the wavelength for hydrogen:
![\frac{1}{\lambda}=R_H(\frac{1}{2^2}-\frac{1}{3^2})\\\lambda=[R_H(\frac{1}{2^2}-\frac{1}{3^2})]^{-1}\\\lambda=[1.0967*10^7m^{-1}(\frac{1}{2^2}-\frac{1}{3^2})]^{-1}\\\lambda=6.5646*10^{-7}m=656.46nm](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5Clambda%7D%3DR_H%28%5Cfrac%7B1%7D%7B2%5E2%7D-%5Cfrac%7B1%7D%7B3%5E2%7D%29%5C%5C%5Clambda%3D%5BR_H%28%5Cfrac%7B1%7D%7B2%5E2%7D-%5Cfrac%7B1%7D%7B3%5E2%7D%29%5D%5E%7B-1%7D%5C%5C%5Clambda%3D%5B1.0967%2A10%5E7m%5E%7B-1%7D%28%5Cfrac%7B1%7D%7B2%5E2%7D-%5Cfrac%7B1%7D%7B3%5E2%7D%29%5D%5E%7B-1%7D%5C%5C%5Clambda%3D6.5646%2A10%5E%7B-7%7Dm%3D656.46nm)
For deuterium, we have
:
![R_D=\frac{1.09737*10^7m^{-1}}{(1+\frac{9.11*10^{-31}kg}{2*1.67*10^{-27}kg})}\\R_D=1.09707*10^7m^{-1}\\\\\lambda=[R_D(\frac{1}{2^2}-\frac{1}{3^2})]^{-1}\\\lambda=[1.09707*10^7m^{-1}(\frac{1}{2^2}-\frac{1}{3^2})]^{-1}\\\lambda=6.5629*10^{-7}=656.29nm](https://tex.z-dn.net/?f=R_D%3D%5Cfrac%7B1.09737%2A10%5E7m%5E%7B-1%7D%7D%7B%281%2B%5Cfrac%7B9.11%2A10%5E%7B-31%7Dkg%7D%7B2%2A1.67%2A10%5E%7B-27%7Dkg%7D%29%7D%5C%5CR_D%3D1.09707%2A10%5E7m%5E%7B-1%7D%5C%5C%5C%5C%5Clambda%3D%5BR_D%28%5Cfrac%7B1%7D%7B2%5E2%7D-%5Cfrac%7B1%7D%7B3%5E2%7D%29%5D%5E%7B-1%7D%5C%5C%5Clambda%3D%5B1.09707%2A10%5E7m%5E%7B-1%7D%28%5Cfrac%7B1%7D%7B2%5E2%7D-%5Cfrac%7B1%7D%7B3%5E2%7D%29%5D%5E%7B-1%7D%5C%5C%5Clambda%3D6.5629%2A10%5E%7B-7%7D%3D656.29nm)