Answer:

1. 〈x,y,z〉=〈−1,−7,3〉+t〈−4,−5,−6〉 F
2. 〈x,y,z〉=〈−1,−7,3〉+t〈3,−2,9〉 F
3. 〈x,y,z〉=〈−1,−7,3〉+t〈4,5,6〉 T
4. 〈x,y,z〉=〈3,−2,9〉+t〈−1,−7,3〉 F
5. 〈x,y,z〉=〈3,−2,9〉+t〈4,5,6〉 F
Step-by-step explanation:
The vector AB is the vectorial difference between point A and B, that is:

Given that
and
, the vector AB is:



The vectorial equation of the line is represented by:

Where
is the parametric variable, dimensionless. Given that
and 

Finally, the list of questions are now checked:
1. 〈x,y,z〉=〈−1,−7,3〉+t〈−4,−5,−6〉 F
2. 〈x,y,z〉=〈−1,−7,3〉+t〈3,−2,9〉 F
3. 〈x,y,z〉=〈−1,−7,3〉+t〈4,5,6〉 T
4. 〈x,y,z〉=〈3,−2,9〉+t〈−1,−7,3〉 F
5. 〈x,y,z〉=〈3,−2,9〉+t〈4,5,6〉 F