C because a is incorrect and so is b and d
Let x = no. of 10 oz cups sold
Let y = no. of 14 oz cups sold
Let z = no. of 20 oz cups sold
:
Equation 1: total number of cups sold:
x + y + z = 24
:
Equation 2: amt of coffee consumed:
10x + 14y + 20z = 384
:
Equation 3: total revenue from cups sold
.95x + 1.15y + 1.50z = 30.60
:
Mult the 1st equation by 20 and subtract the 2nd equation from it:
20x + 20y + 20z = 480
10x + 14y + 20z = 384
------------------------ subtracting eliminates z
10x + 6y = 96; (eq 4)
Mult the 1st equation by 1.5 and subtract the 3rd equation from it:
1.5x + 1.5y + 1.5z = 36.00
.95x + 1.15y+ 1.5z = 30.60
---------------------------subtracting eliminates z again
.55x + .35y = 5.40; (eq 5)
Multiply eq 4 by .055 and subtract from eq 5:
.55x + .35y = 5.40
.55x + .33y = 5.28
--------------------eliminates x
0x + .02y = .12
y = .12/.02
y = 6 ea 14 oz cups sold
Substitute 6 for y for in eq 4
10x + 6(6) = 96
10x = 96 - 36
x = 60/10
x = 6 ea 10 oz cups
That would leave 12 ea 20 oz cups (24 - 6 - 6 = 12)
Check our solutions in eq 2:
10(6) + 14(6) + 20(12) =
60 + 84 + 240 = 384 oz
A lot steps, hope it made some sense! I hope this helps!! ;D
To determine the number of tickets that Ric sold, subtract from the total tickets sold the sum of the number of tickets sold by Alex and Ian. This is mathematically shown as,
tickets (Ric) = tickets (total) - (tickets (Alex) + tickets (Ian))
tickets (Ric) = 48 - (11 + 18) = 19
Hence, Ric sold 19 tickets for the fundraising.
Answer:
p
Step-by-step explanation:
Um i think that the answer is c.12.46