Answer:
The time taken is 
Explanation:
From the question we are told that
The speed of first car is 
The speed of second car is 
The initial distance of separation is 
The distance covered by first car is mathematically represented as

Here
is the initial distance which is 0 m/s
and
is the final distance covered which is evaluated as
So


The distance covered by second car is mathematically represented as

Here
is the initial distance which is 119 m
and
is the final distance covered which is evaluated as

Given that the two car are now in the same position we have that


Answer:
a) μ = 0.1957
, b) ΔK = 158.8 J
, c) K = 0.683 J
Explanation:
We must solve this problem in parts, one for the collision and the other with the conservation of energy
Let's find the speed of the wood block after the crash
Initial moment. Before the crash
p₀ = m v₁₀ + M v₂₀
Final moment. Right after the crash
pf = m
+ M v_{2f}
The system is made up of the block and the bullet, so the moment is preserved
p₀ = pf
m v₁₀ = m v_{1f} + M v_{2f}
v_{2f} = m (v₁₀ - v_{1f}) / M
v_{2f} = 4.5 10-3 (400 - 190) /0.65
v_{2f} = 1.45 m / s
Now we can use the energy work theorem for the wood block
Starting point
Em₀ = K = ½ m v2f2
Final point
Emf = 0
W = ΔEm
- fr x = 0 - ½ m v₂₂2f2
The friction force is
fr = μN
With Newton's second law
N- W = 0
N = Mg
We substitute
-μ Mg x = - ½ M v2f2
μ = ½ v2f2 / gx
Let's calculate
μ = ½ 1.41 2 / 9.8 0.72
μ = 0.1957
b) let's look for the initial and final kinetic energy
K₀ = 1/2 m v₁²
K₀ = ½ 4.50 10⁻³ 400²
K₀ = 2.40 10² J
Kf = ½ 4.50 10⁻³ 190²
Kf = 8.12 10¹ J
Energy reduction is
K₀ - Kf = 2.40 10²- 8.12 10¹
ΔK = 158.8 J
c) kinetic energy
K = ½ M v²
K = ½ 0.650 1.45²
K = 0.683 J