The block that has a higher temperature describes the thermal energy of these blocks. Thermal energy is a measure of internal energy - therefore, the block with the higher temperature has more internal energy than the block with the lower temperature, meaning it's thermal energy is greater.
Answer:
speed of puck acc. to the radar gun = 138 km/h
speed of player = 15 km/h
since the player is in motion when he shoots, the speed of the puck will be the sum of the speed of the player and the speed at which he shot. so,
speed of puck = speed of player + speed of puck acc. to player
138 = 15 + speed of puck acc. to player
speed of puck acc. to player = 138 -15
speed of puck acc. to player = 123 km/h
Brainly this answer if you think it deserves it
Answer: Two celestial objects are in space: one with a mass of 8.22 x 109 kg and one with a mass of 1.38 x 108 kg. If they are separated by a distance of 1.43 km, then, the magnitude of the force of attraction (in newtons) between the objects will be 52.9kN
Explanation: To find the answer we need to know more about the Newton's law of gravitation.
<h3>What is Newton's law of gravitation?</h3>
- Gravitation is the force of attraction between any two bodies.
- Every body in the universe attracts every other body with a force.
- This force is directly proportional to the product of their masses and inversely proportional to the square of the distance between these two masses.
- Mathematically we can expressed it as,

<h3>How to solve the problem?</h3>
- Here, we have given with the data's,

- Thus, the force of attraction between these two bodies will be,

Thus, if two celestial objects are in space: one with a mass of 8.22 x 109 kg and one with a mass of 1.38 x 108 kg and, If they are separated by a distance of 1.43 km, then, the magnitude of the force of attraction (in newtons) between the objects will be 52.9kN.
Learn more about the Newton's law of gravitation here:
brainly.com/question/28045318
#SPJ4
Answer:
d. Not enough information is given to answer this question.
Explanation:
From first law of thermodynamics
Q= W + ΔU
Q=Heat ,W= Work , ΔU=Change in internal energy
If work done by the gas :
It means that W and Q both are positive
Q- W = ΔU
Ii Q > W ,then temperature of the gas will increase.
If Q< W ,Then temperature of the gas will decreases.
If work done on the gas:
Q positive but W will be negative
Q- W = ΔU
Q= W or Q>W or Q< W ,then temperature of the gas will increase.
There are three cases because they did not give any information about the work.That is why option d is correct.