Answer:
4.88 K.
Explanation:
From the question given above, the following data were obtained:
Number of mole (n) = 5 moles
Pressure (P) = 1 atm
Volume (V) = 2 L
Gas constant (R) = 0.082 atm.L/Kmol
Temperature (T) =?
The temperature of the gas can be obtained by using the ideal gas equation as illustrated below:
PV = nRT
1 × 2 = 5 × 0.082 × T
2 = 0.41 × T
Divide both side by 0.41
T = 2 / 0.41
T = 4.88 K
Therefore, the temperature of the gas is 4.88 K.
Hey JayDilla, I get 1/3. Here's how:
Kinetic energy due to linear motion is:

where

giving

The rotational part requires the moment of inertia of a solid cylinder

Then the rotational kinetic energy is

Adding the two types of energy and factoring out common terms gives

Here the "1" in the parenthesis is due to linear motion and the "1/2" is due to the rotational part. Since this gives a total of 3/2 altogether, and the rotational part is due to a third of this (1/2), I say it's 1/3.
Answer:
0.51
Explanation:
m = mass of the book = 3.5 kg
F = force applied by the broom on the book = 21 N
a = acceleration of the book
v₀ = initial speed of the book = 0 m/s
v = final speed of the book = 1.2 m/s
d = distance traveled = 0.74 m
Using the equation
v² = v₀² + 2 a d
1.2² = 0² + 2 a (0.74)
a = 0.973 m/s²
f = kinetic frictional force
Force equation for the motion of the book is given as
F - f = ma
21 - f = (3.5) (0.973)
f = 17.6 N
μ = Coefficient of kinetic friction
Kinetic frictional force is given as
f = μ mg
17.6 = μ (3.5 x 9.8)
μ = 0.51
A<span>ll scientific endeavors involve experimentation.</span>
Answer:
The Principle of Moments states that when a body is balanced, the total clockwise moment about a point equals the total anticlockwise moment about the same point. Moment =force F x perpendicular distance from the pivot d.