The <em>speed</em> intervals such that the mileage of the vehicle described is 20 miles per gallon or less are: v ∈ [10 mi/h, 20 mi/h] ∪ [50 mi/h, 75 mi/h]
<h3>How to determine the range of speed associate to desired gas mileages</h3>
In this question we have a <em>quadratic</em> function of the <em>gas</em> mileage (g), in miles per gallon, in terms of the <em>vehicle</em> speed (v), in miles per hour. Based on the information given in the statement we must solve for v the following <em>quadratic</em> function:
g = 10 + 0.7 · v - 0.01 · v² (1)
An effective approach consists in using a <em>graphing</em> tool, in which a <em>horizontal</em> line (g = 20) is applied on the <em>maximum desired</em> mileage such that we can determine the <em>speed</em> intervals. The <em>speed</em> intervals such that the mileage of the vehicle is 20 miles per gallon or less are: v ∈ [10 mi/h, 20 mi/h] ∪ [50 mi/h, 75 mi/h].
To learn more on quadratic functions: brainly.com/question/5975436
#SPJ1
So u will do 20.2*15=303 so ure answer would be 303 oz
Answer:
length times hight times whith
Approximate the real zeros of f(x) = x2 + 3x + 1 to the nearest tenth
<u>C. 2.6,-0.4</u>
<u />
Answer:
-8
Step-by-step explanation:
what do you think, when you look at the examples given in the problem definition ?
don't you see the pattern, that f(x) = x+2 ?
f(1) = 1+2 = 3
f(2) = 2+2 = 4
f(3) = 3+2 = 5
so, if we follow this assumption, then
f(-10) = -10 + 2 = -8