Answer:
Please show the warning's
Explanation:
The Law of Conservation of Energy
Answer:
Explanation:
Let the equilibrium position of third charge be x distance from q₁.
Force on third charge due to q₁
= 9 x 10⁹ x 5 x 10⁻⁹ x 15 x 10⁺⁹ / x²
Force on third charge due to q₂
= 9 x 10⁹ x 2 x 10⁻⁹ x 15 x 10⁺⁹ /( .40-x)²
Both the force will act in opposite direction and for balancing , they should be equal.
9 x 10⁹ x 5 x 10⁻⁹ x 15 x 10⁺⁹ / x² = 9 x 10⁹ x 2 x 10⁻⁹ x 15 x 10⁺⁹ /( .40-x)²
5 / x² = 2 / ( .4 - x )²
Taking square root on both sides
2.236 / x = 1.414 / .4 - x
2.236 ( .4 - x ) = 1.414 x
.8944 - 2.236 x = 1.414 x
.8944 = 3.65 x
x = .245 m
24.5 cm
So the third charge should be at a distance of 24.5 cm from q₁ .
The total flux through the cylinder is zero.
In fact, the electric flux through a surface (for a uniform electric field) is given by:

where
E is the intensity of the electric field
A is the surface
is the angle between the direction of E and the perpendicular to the surface, whose direction is always outwards of the surface.
We can ignore the lateral surface of the cylinder, since the electric field is parallel to it, therefore the flux through the lateral surface of the cylinder is zero (because
and
).
On the other two surfaces, the flux is equal and with opposite sign. In fact, on the first surface the flux will be

where r is the radius, and where we have taken
since the perpendicular to the surface is parallel to the direction of the electric field, so
. On the second surface, however, the perpendicular to the surface is opposite to the electric field, so
and
, therefore the flux is

And the net flux through the cylinder is

Answer:
58.44 C
Explanation:
Electric field is found by
Therefore, the charge is


Therefore, required charge is 58.44 C