<h3><u>Answer</u>;</h3>
≈ 5 Kgm²/sec
<h3><u>Explanation</u>;</h3>
Angular momentum is given by the formula
L = Iω, where I is the moment of inertia and ω is the angular speed.
I = mr², where m is the mass and r is the radius
= 0.65 × 0.7²
= 0.3185
Angular speed, ω = v/r
= (2 × 3.142 × r × 2.5) r
= 15.71
Therefore;
Angular momentum = Iω
= 0.3185 × 15.71
= 5.003635
<u>≈ 5 Kgm²/sec</u>
<span>The part of the electromagnetic spectrum that is necessary for the sense of sight in humans is called visible light. This portion of the electromagnetic spectrum is composed of the various colors that the human eyes can distinguish. Each color has a corresponding wavelength. The human eyes can see wavelengths between 390-700 nm, and visible light ranges from 380-750 nm.</span>
(a) 0.714 cm
First of all, we need to find the spring constant of the spring. This can be done by using Hooke's law:

where
F is the force applied on the spring
k is the spring constant
x is the stretching of the spring
At the beginning, the force applied is the weight of the block of m = 4.20 kg hanging on the spring, therefore:

The stretching of the spring due to this force is
x = 2.00 cm = 0.02 m
Therefore, the spring constant is

Now, a new object of 1.50 kg is hanging on the spring instead of the previous one. So, the weight of this object is

And so, the stretching of th spring in this case is

(b) 1.65 J
The work done on a spring is given by:

where
k is the spring constant
x is the stretching of the spring
In this situation,
k = 2060 N/m
x = 4.00 cm = 0.04 m is the stretching due to the external agent
So, the work done is

Answer:
kinetic is the stored energy being released from being dormant
Explanation: