Answer:
The turbine is rotated and rotates the generator to produce electricity.
Explanation:
Within a turbine enters the superheated steam which is at high pressure and high temperature, this steam is previously formed in the boiler when the steam enters the turbine hits each one of the blades of the turbine making it rotate at a given speed, the turbine shaft is coupled to the shaft of an electric generator and thus generates electricity.
It is also important to say that when the steam comes out of the turbine comes out at low pressure, this way the internal operating process is carried out within the turbine.
Answer:
Explanation:
Given
Each student exert a force of 
Let mass of car be m
there are 18 students who lifts the car
Total force by 18 students 
therefore weight of car 
mass of car 

(b)
Answer:
the gauge pressure at the upper face of the block is 116 Pa
Explanation:
Given the data in the question;
A cubical block of wood, 10.0 cm on a side.
height h = 1.50 cm = ( 1.50 × ( 1 / 100 ) ) m = 0.0150 m
density ρ = 790 kg/m³
Using expression for the gauged pressure;
p-p₀ = ρgh
where, p₀ is atmospheric pressure, ρ is the density of the substance, g is acceleration due to gravity and h is the depth of the fluid.
we know that, acceleration due to gravity g = 9.8 m/s²
so we substitute
p-p₀ = 790 kg/m³gh × 9.8 m/s² × 0.0150 m
= 116.13 ≈ 116 Pa
Therefore, the gauge pressure at the upper face of the block is 116 Pa
Answer:
Social psychologists utilize experimental techniques to study how people are influenced by groups. Health psychologists rely on experimentation and research to better understand the factors that contribute to wellness and disease.
Explanation:
Answer:
- tension: 19.3 N
- acceleration: 3.36 m/s^2
Explanation:
<u>Given</u>
mass A = 2.0 kg
mass B = 3.0 kg
θ = 40°
<u>Find</u>
The tension in the string
The acceleration of the masses
<u>Solution</u>
Mass A is being pulled down the inclined plane by a force due to gravity of ...
F = mg·sin(θ) = (2 kg)(9.8 m/s^2)(0.642788) = 12.5986 N
Mass B is being pulled downward by gravity with a force of ...
F = mg = (3 kg)(9.8 m/s^2) = 29.4 N
The tension in the string, T, is such that the net force on each mass results in the same acceleration:
F/m = a = F/m
(T -12.59806 N)/(2 kg) = (29.4 N -T) N/(3 kg)
T = (2(29.4) +3(12.5986))/5 = 19.3192 N
__
Then the acceleration of B is ...
a = F/m = (29.4 -19.3192) N/(3 kg) = 3.36027 m/s^2
The string tension is about 19.3 N; the acceleration of the masses is about 3.36 m/s^2.