CAD= BAD
AD=AD( the same side of two angles).
#5
57.8 can be rounded to 60 because 57.8 is closer to 60 than 50 and 81 is relatively close to 80. if we had to estimate the quotient, we would have
60 ÷ 80 = 0.75
#8
2.8 can be rounded to 3 because 2.8 is closer to 3 than it is to 2 and 6 can be left alone because it will make our division easier.
3 ÷ 6 = 0.5
#11
737.5 can be rounded to 700 and 9 can be rounded to 10.
700 ÷ 10 = 100
10(4x-1) is the answer to your question my friend
Not sure about the question, but answer is:
3/5* 2/5 = 6/25=0.24 =24%
If inspection department wants to estimate the mean amount with 95% confidence level with standard deviation 0.05 then it needed a sample size of 97.
Given 95% confidence level, standard deviation=0.05.
We know that margin of error is the range of values below and above the sample statistic in a confidence interval.
We assume that the values follow normal distribution. Normal distribution is a probability that is symmetric about the mean showing the data near the mean are more frequent in occurence than data far from mean.
We know that margin of error for a confidence interval is given by:
Me=
α=1-0.95=0.05
α/2=0.025
z with α/2=1.96 (using normal distribution table)
Solving for n using formula of margin of error.

n=
=96.4
By rounding off we will get 97.
Hence the sample size required will be 97.
Learn more about standard deviation at brainly.com/question/475676
#SPJ4
The given question is incomplete and the full question is as under:
If the inspection division of a county weights and measures department wants to estimate the mean amount of soft drink fill in 2 liters bottles to within (0.01 liter with 95% confidence and also assumes that standard deviation is 0.05 liter. What is the sample size needed?