Answer:
1) AD=BC(corresponding parts of congruent triangles)
2)The value of x and y are 65 ° and 77.5° respectively
Step-by-step explanation:
1)
Given : AD||BC
AC bisects BD
So, AE=EC and BE=ED
We need to prove AD = BC
In ΔAED and ΔBEC
AE=EC (Given)
( Vertically opposite angles)
BE=ED (Given)
So, ΔAED ≅ ΔBEC (By SAS)
So, AD=BC(corresponding parts of congruent triangles)
Hence Proved
2)
Refer the attached figure
![\angle ABC = 90^{\circ}](https://tex.z-dn.net/?f=%5Cangle%20ABC%20%3D%2090%5E%7B%5Ccirc%7D)
In ΔDBC
BC=DC (Given)
So,
(Opposite angles of equal sides are equal)
So,![\angle CDB=\angle DBC=x](https://tex.z-dn.net/?f=%5Cangle%20CDB%3D%5Cangle%20DBC%3Dx)
So,
(Angle sum property)
x+x+50=180
2x+50=180
2x=130
x=65
So,![\angle CDB=\angle DBC=x = 65^{\circ}](https://tex.z-dn.net/?f=%5Cangle%20CDB%3D%5Cangle%20DBC%3Dx%20%3D%2065%5E%7B%5Ccirc%7D)
Now,
![\angle ABC = 90^{\circ}\\\angle ABC=\angle ABD+\angle DBC=\angle ABD+x=90](https://tex.z-dn.net/?f=%5Cangle%20ABC%20%3D%2090%5E%7B%5Ccirc%7D%5C%5C%5Cangle%20ABC%3D%5Cangle%20ABD%2B%5Cangle%20DBC%3D%5Cangle%20ABD%2Bx%3D90)
So,![\angle ABD=90-x=90-65=25^{\circ}](https://tex.z-dn.net/?f=%5Cangle%20ABD%3D90-x%3D90-65%3D25%5E%7B%5Ccirc%7D)
In ΔABD
AB = BD (Given)
So,
(Opposite angles of equal sides are equal)
So,![\angle BAD=\angle BDA=y](https://tex.z-dn.net/?f=%5Cangle%20BAD%3D%5Cangle%20BDA%3Dy)
So,
(Angle Sum property)
y+y+25=180
2y=180-25
2y=155
y=77.5
So, The value of x and y are 65 ° and 77.5° respectively
Answer:
4 5/10
Step-by-step explanation:
Divide. You will have a remainder. Put the remainder over the denominator:
45/10 = 40/10 + 5/10 = 4 5/10
4 5/10 is your answer.
~
Answer:
15:12:16
Step-by-step explanation:
x:y= 5:4
y:z= 3:2
5×3= 4×3
3×4= 2×8
15= 12
12= 16
Therefore x:y:z can be shown as follows
= 15:12:16
Answer:
41.7 m^2
Step-by-step explanation:
Area of A
6×4 =24m^2
Area of B
3.5 × (3.8 - 2)
= 6.3m^2
Area of C
3.8×3 = 11.4m^2
Total area= 24 + 6.3 + 11.4
= 41.7m^2