The focal length of a magnifying glass is the distance between the focal point and optical centre of the magnifying glass.
<h3>Focal length</h3>
The focal length, f is the distance from a lens or mirror to the focal point, F.
This is the distance from a lens or mirror at which parallel light rays will meet for a converging lens or mirror or appear to diverge from for a diverging lens or mirror.
A magnifying glass is a converging lens which produces a enlarged, erect and virtual image when an object is placed between the focal point and optical centre.
A magnifying glass will bring to focus at a point sun rays which can cause the paper to catch fire if it is held in place for long.
This point at which the most concentrated ray of light is shining on the paper, is the focal point for that magnifying glass.
Therefore, the focal length of a magnifying glass is the distance between the focal point and optical centre of the magnifying glass.
Learn more about about focal length at: brainly.com/question/25779311
Answer:
The angle of incidence is equal to the angle of reflection.
Explanation:
angle of incidence (i) = angle of reflection (r)
So if the angle of incidence was 45°, the angle of reflection would also be 45°.
The electric potential is a scalar unit, so we don't have to struggle with the vectors. The formula that gives electric potential is

1) At point a, the electric potential is the sum of the potentials due to q1 and q2. So,

The distance from the center of the square to one of the corners is 

The answer is zero, because the point charges are at equal distances and their magnitudes are also equal but their directions are opposite.
2) 

![V_b = \frac{1}{4\pi\epsilon_0}\frac{2\times10^{-6}}{0.05\sqrt2} + \frac{1}{4\pi\epsilon_0}\frac{-2\times10^{-6}}{0.05}\\V_b = \frac{1}{4\pi\epsilon_0}\frac{2\times10^{-6}}{0.05} (\frac{1}{\sqrt2}-1)\\V_b = \frac{1}{4\pi\epsilon_0} (4\times 10^{-5})(-0.29)\\V_b = (-\frac{2.9\times10^{-6}}{\pi\epsilon_0})[tex]3) The work done on q3 by q1 and q2 is equal to the difference between energies. This is the work-energy theorem. So,[tex]W = U_b - U_a](https://tex.z-dn.net/?f=V_b%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%5Cepsilon_0%7D%5Cfrac%7B2%5Ctimes10%5E%7B-6%7D%7D%7B0.05%5Csqrt2%7D%20%2B%20%5Cfrac%7B1%7D%7B4%5Cpi%5Cepsilon_0%7D%5Cfrac%7B-2%5Ctimes10%5E%7B-6%7D%7D%7B0.05%7D%5C%5CV_b%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%5Cepsilon_0%7D%5Cfrac%7B2%5Ctimes10%5E%7B-6%7D%7D%7B0.05%7D%20%28%5Cfrac%7B1%7D%7B%5Csqrt2%7D-1%29%5C%5CV_b%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%5Cepsilon_0%7D%20%284%5Ctimes%2010%5E%7B-5%7D%29%28-0.29%29%5C%5CV_b%20%3D%20%28-%5Cfrac%7B2.9%5Ctimes10%5E%7B-6%7D%7D%7B%5Cpi%5Cepsilon_0%7D%29%5Btex%5D%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E3%29%20The%20work%20done%20on%20q3%20by%20q1%20and%20q2%20is%20equal%20to%20the%20difference%20between%20%20energies.%20This%20is%20the%20work-energy%20theorem.%20So%2C%3C%2Fp%3E%3Cp%3E%5Btex%5DW%20%3D%20U_b%20-%20U_a)


If the ice absorbed 350,000 joules in 5 minutes, then it absorbed energy
at the rate of
(350,000 joules) / (5 x 60 seconds) =<em> 1,166-2/3 watts</em> .
Surely the ice cube didn't absorb every joule delivered to the cooking chamber,
so the microwave oven's cooking power had to be significantly more than that.
Potassium is in the most reactive group of elements, the alkali metals, but it's not the most reactive metal within the group. The alkali metals, Group 1A, are the most reactive metals because they have one valence or outer electron. They lose this electron very easily, forming ions with a charge of +1.