The decreasing order of wavelengths of the photons emitted or absorbed by the H atom is : b → c → a → d
Rydberg's formula :
,
where λ is the wavelength of the photon emitted or absorbed from an H atom electron transition from
to
and
= 109677 is the Rydberg Constant. Here
and
represents the transitions.
(a)
=2 to
= infinity
= 109677/4 [since 1/infinity = 0] Therefore,
= 4 / 109677 = 0.00003647 m
(b)
=4 to
= 20
= 6580.62
Therefore,
= 1 / 6580.62 = 0.000152 m
(c)
=3 to
= 10
= 11089.56
Therefore,
= 1 / 11089.56 = 0.00009 m
(d)
=2 to
= 1
= - 82257.75
Therefore,
= 1 /82257.75 = - 0.0000121 m
[Even though there is a negative sign, the magnitude is only considered because the sign denotes that energy is emitted.]
So the decreasing order of wavelength of the photon absorbed or emitted is b → c → a → d.
Learn more about the Rydberg's formula athttps://brainly.com/question/14649374
#SPJ4
A source of error is any factor that may affect the outcome of an experiment. There are countless conceivable sources of error in any experiment; you want to focus on the factors that matter most. Identify each source of error specifically and then explain how that source of error would have affected the results. Keep in mind that an "error" to a scientist does not mean "mistake"; it more closely means "uncertainty".
Many students are tempted to say "human error", but this term is vague and lazy; any decent teacher will not accept it. Instead, think about specific things that happened during the lab exercise where the end results may have been affected.
To give an example one might find in a bio lab: perhaps a water bath's temperature was not monitored very carefully and you found that an enzyme's activity was greater than you expected. In that case, you could write something like,
"The temperature of the water bath during this exercise was not monitored carefully. It is possible that it was warmer or cooler than intended, and this would have affected the enzyme activity accordingly. The fact that our enzyme activity was found to be higher than expected leads me to believe that perhaps the water bath was too warm."
Wavelength of the light is 2.9 × 10⁻⁷ m.
<u>Explanation:</u>
Planck - Einstein equation shows the relationship between the energy of a photon and its frequency, and they are directly proportional to each other and it is given by the equation as E = hν,
where E is the energy of the photon
h is the Planck's constant = 6.626 × 10⁻³⁴ J s
ν is the frequency
From the above equation, we can find the frequency by rearranging the equation as,
ν =
= 
Now the frequency and the wavelength are in inverse relationship with each other.
ν × λ = c
It can be rearranged to get λ as,
λ = c / ν
= 
So wavelength is 2.9 × 10⁻⁷ m.
Size (length+width) approx.