Answer:
270 mi/h
Explanation:
Given that,
To the south,
v₁ = 300 mi/h, t₁ = 2 h
We can find distance, d₁

To the north,
v₂ = 250 mi/h, d₂ = 750 miles
We can find time, t₂

Now,
Average speed = total distance/total time

Hence, the average speed for the trip is 270 mi/h.
Mechanical energy equals the sum of potential and kinetic energy. During the process, all PE converts into KE, assuming air resistance is neglected. So, the mechanical energy does not change and is equal to the initial potential energy.
ME
=mgh
=0.005 x 9.81 x 3
=0.147J
By applying Newton's second law of motion;
ma = mg - T
Where,
m = mass; a = downward accelerations (+ve value) or upward acceleration (-ve value); g = gravitational acceleration; T = tension.
For the current case, the velocity is constant therefore,
a = 0
Then,
0 = mg - T
T = mg = 115*9.81 = 1128.15 N
Tension in the cable is 1128.15 N.