1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vekshin1
3 years ago
12

Answer the question with explanation;​

Mathematics
2 answers:
PSYCHO15rus [73]3 years ago
7 0

Answer:

The statement in the question is wrong. The series actually diverges.

Step-by-step explanation:

We compute

\lim_{n\to\infty}\frac{n^2}{(n+1)^2}=\lim_{n\to\infty}\left(\frac{n^2}{n^2+2n+1}\cdot\frac{1/n^2}{1/n^2}\right)=\lim_{n\to\infty}\frac1{1+2/n+1/n^2}=\frac1{1+0+0}=1\ne0

Therefore, by the series divergence test, the series \sum_{n=1}^\infty\frac{n^2}{(n+1)^2} diverges.

EDIT: To VectorFundament120, if (x_n)_{n\in\mathbb N} is a sequence, both \lim x_n and \lim_{n\to\infty}x_n are common notation for its limit. The former is not wrong but I have switched to the latter if that helps.

elena-s [515]3 years ago
7 0

Answer:

\displaystyle \sum^{\infty}_{n = 1} \frac{n^2}{(n + 1)^2} = \text{div}

General Formulas and Concepts:

<u>Calculus</u>

Limits

  • Special Limit Rule [Coefficient Power Method]:                                         \displaystyle \lim_{x \to \pm \infty} \frac{ax^n}{bx^n} = \frac{a}{b}

Series Convergence Tests

  • nth Term Test:                                                                                               \displaystyle \sum^{\infty}_{n = 1} a_n \rightarrow \lim_{n \to \infty} a_n
  • Integral Test:                                                                                                 \displaystyle \sum^{\infty}_{n = a} f(n) \rightarrow \int\limits^{\infty}_a {f(x)} \, dx
  • P-Series:                                                                                                         \displaystyle \sum^{\infty}_{n = 1} \frac{1}{n^p}
  • Direct Comparison Test (DCT)
  • Limit Comparison Test (LCT)
  • Alternating Series Test (AST)
  • Ratio Test:                                                                                                     \displaystyle \sum^{\infty}_{n = 0} a_n \rightarrow \lim_{n \to \infty} \bigg| \frac{a_{n + 1}}{a_n} \bigg|

Step-by-step explanation:

*Note:

Always apply the nth Term Test as the first test to use for convergence.

Rules:

  1. If  \displaystyle  \lim_{n \to \infty} S_n = 0, then the nth Term Test is inconclusive.
  2. If  \displaystyle  \lim_{n \to \infty} S_n = l  (some number <em>l</em>), then the series is divergent by the nth Term Test.

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \sum^{\infty}_{n = 1} \frac{n^2}{(n + 1)^2}

<u>Step 2: Find Convergence</u>

  1. Substitute in variables [nth Term Test]:                                                       \displaystyle \sum^{\infty}_{n = 1} \frac{n^2}{(n + 1)^2} \rightarrow \lim_{n \to \infty} \frac{n^2}{(n + 1)^2}
  2. Expand:                                                                                                         \displaystyle \lim_{n \to \infty} \frac{n^2}{(n + 1)^2}= \lim_{n \to \infty} \frac{n^2}{n^2 + 2n + 1}
  3. Evaluate limit [Special Limit Rule - Coefficient Power Method]:                 \displaystyle \lim_{n \to \infty} \frac{n^2}{(n + 1)^2} = 1
  4. Compute [nth Term Test]:                                                                             \displaystyle \sum^{\infty}_{n = 1} \frac{n^2}{(n + 1)^2} = \text{div}

∴ by the nth Term Test, the series diverges.

Topic: AP Calculus BC (Calculus I + II)

Unit: Convergence Tests

You might be interested in
Please answer this i’ll give brainliest
Zepler [3.9K]
Answer is b
it was rotated 90 degrees counterclockwise.
8 0
3 years ago
Sean drank 2 liters of water today which was 280 milliliters more than he drank yesterday. How much water did he drink yesterday
BigorU [14]
2000mL - 280mL = 1720mL or 1.72L
7 0
3 years ago
-5a-6a=121 please help
tigry1 [53]
-11a=121. divide both by -11 and get a=-11
3 0
3 years ago
Five times the sum of number and 27 is greater than or equal to six times the sum of that number and 26. What is the
raketka [301]

Answer:

x \geq -21

Step-by-step explanation:

Let the number be x.

Translating the word problem into an algebraic equation, we have;

5(x + 27) \geq 6(x + 26)

Opening the bracket, we have;

5x + 135 \geq 6x + 156

Collecting like terms, we have;

6x - 5x \geq 135 - 156

x \geq -21

8 0
3 years ago
What is the slope of the line
Deffense [45]
The slope is 1/2 because for every time it up 1 unit it goes 2 units to the right
7 0
3 years ago
Read 2 more answers
Other questions:
  • virgil is traveling around a circular island. if he travels a 1000 mile course keeping a constant distance of 200 miles from the
    10·1 answer
  • Write the ratios for sin X and cos X.
    12·1 answer
  • Is 432 evenly divisible by 9
    12·2 answers
  • What is the answer to the question above
    5·1 answer
  • Help!!!Can someone help me with my math task? ​
    8·1 answer
  • Four slices of cheesecake and one slice of pie cost $18. Seven slices of cheesecake and three slices of pie costs $34. How much
    5·2 answers
  • I am greater than 4 tens and less than 5 tens I have 9 ones
    15·1 answer
  • Two data sets are summarized in the box plots shown
    14·2 answers
  • A prime multiplied by a prime is always a prime.
    10·1 answer
  • What value of k makes the following equation true?<br><br> k/3= 36
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!