1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vekshin1
2 years ago
12

Answer the question with explanation;​

Mathematics
2 answers:
PSYCHO15rus [73]2 years ago
7 0

Answer:

The statement in the question is wrong. The series actually diverges.

Step-by-step explanation:

We compute

\lim_{n\to\infty}\frac{n^2}{(n+1)^2}=\lim_{n\to\infty}\left(\frac{n^2}{n^2+2n+1}\cdot\frac{1/n^2}{1/n^2}\right)=\lim_{n\to\infty}\frac1{1+2/n+1/n^2}=\frac1{1+0+0}=1\ne0

Therefore, by the series divergence test, the series \sum_{n=1}^\infty\frac{n^2}{(n+1)^2} diverges.

EDIT: To VectorFundament120, if (x_n)_{n\in\mathbb N} is a sequence, both \lim x_n and \lim_{n\to\infty}x_n are common notation for its limit. The former is not wrong but I have switched to the latter if that helps.

elena-s [515]2 years ago
7 0

Answer:

\displaystyle \sum^{\infty}_{n = 1} \frac{n^2}{(n + 1)^2} = \text{div}

General Formulas and Concepts:

<u>Calculus</u>

Limits

  • Special Limit Rule [Coefficient Power Method]:                                         \displaystyle \lim_{x \to \pm \infty} \frac{ax^n}{bx^n} = \frac{a}{b}

Series Convergence Tests

  • nth Term Test:                                                                                               \displaystyle \sum^{\infty}_{n = 1} a_n \rightarrow \lim_{n \to \infty} a_n
  • Integral Test:                                                                                                 \displaystyle \sum^{\infty}_{n = a} f(n) \rightarrow \int\limits^{\infty}_a {f(x)} \, dx
  • P-Series:                                                                                                         \displaystyle \sum^{\infty}_{n = 1} \frac{1}{n^p}
  • Direct Comparison Test (DCT)
  • Limit Comparison Test (LCT)
  • Alternating Series Test (AST)
  • Ratio Test:                                                                                                     \displaystyle \sum^{\infty}_{n = 0} a_n \rightarrow \lim_{n \to \infty} \bigg| \frac{a_{n + 1}}{a_n} \bigg|

Step-by-step explanation:

*Note:

Always apply the nth Term Test as the first test to use for convergence.

Rules:

  1. If  \displaystyle  \lim_{n \to \infty} S_n = 0, then the nth Term Test is inconclusive.
  2. If  \displaystyle  \lim_{n \to \infty} S_n = l  (some number <em>l</em>), then the series is divergent by the nth Term Test.

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \sum^{\infty}_{n = 1} \frac{n^2}{(n + 1)^2}

<u>Step 2: Find Convergence</u>

  1. Substitute in variables [nth Term Test]:                                                       \displaystyle \sum^{\infty}_{n = 1} \frac{n^2}{(n + 1)^2} \rightarrow \lim_{n \to \infty} \frac{n^2}{(n + 1)^2}
  2. Expand:                                                                                                         \displaystyle \lim_{n \to \infty} \frac{n^2}{(n + 1)^2}= \lim_{n \to \infty} \frac{n^2}{n^2 + 2n + 1}
  3. Evaluate limit [Special Limit Rule - Coefficient Power Method]:                 \displaystyle \lim_{n \to \infty} \frac{n^2}{(n + 1)^2} = 1
  4. Compute [nth Term Test]:                                                                             \displaystyle \sum^{\infty}_{n = 1} \frac{n^2}{(n + 1)^2} = \text{div}

∴ by the nth Term Test, the series diverges.

Topic: AP Calculus BC (Calculus I + II)

Unit: Convergence Tests

You might be interested in
Let f(x) = x2 − 3x − 7. Find f(−3).
MrRa [10]
Answer is:
f(-3) = 11
5 0
2 years ago
Read 2 more answers
Use implicit differentiation to find the negative slope of a tangent to the circle x^2+y^2=16 at x=-2
SVETLANKA909090 [29]

Answer:

slope = - \frac{\sqrt{3} }{3}

Step-by-step explanation:

Differentiating implicitly with respect to x

2x + 2y \frac{dy}{dx} = 0

2y \frac{dy}{dx} = - 2x

\frac{dy}{dx} = - \frac{2x}{2y} = - \frac{x}{y}

\frac{dy}{dx} is the measure of the slope of the tangent

rearrange equation to find corresponding y-coordinate of x = - 2

y² = 16 - 4 = 12 = 2\sqrt{3} ⇒ y = ± 2\sqrt{3}

using x = - 2, y = - 2\sqrt{3}, then

\frac{dy}{dx} = - \frac{1}{\sqrt{3} } = - \frac{\sqrt{3} }{3}


3 0
3 years ago
Do the following points represent a function? (0,2) (1,4) (0,4) (3,9) (5,8)​
photoshop1234 [79]
<h3>Answer: No, this isn't a function.</h3>

Why not? Focus on the two points (0,2) and (0,4)

We have the x value x = 0 show up twice. Any time x repeats itself like this, it leads to "not a function" as the result.

In other words, the input x = 0 leads to multiple outputs y = 2 and y = 4 at the same time. A function is only possible if every x input leads to exactly one y output.

If you are a visual learner, then plot all of the points on the same xy grid. Then notice how (0,2) and (0,4) fail the vertical line test to show we don't have a function.

Side note: The y values can repeat themselves in a function.

8 0
2 years ago
Find the solutions to x2 = 20.
Gemiola [76]

Answer:

B.

Step-by-step explanation:

x^2=20; \ => \ \left[\begin{array}{ccc}x=\sqrt{20} \\x=-\sqrt{20} \end{array} \ => \ \left[\begin{array}{ccc}x=2\sqrt{5} \\x=-2 \sqrt{5} \end{array}

3 0
2 years ago
The number 3 help now please
PSYCHO15rus [73]
-6, all of them are the absolute value of 6 or just 6, -6 isn't equivalent to 6. 
7 0
3 years ago
Read 2 more answers
Other questions:
  • Which equation represents a linear function? Equation 1: y = 2x2 + 1 Equation 2: y = 8x + 1 Equation 3: y = 5x3 – 1 Equation 4:
    10·2 answers
  • What is the equation of the line that passes through (-4, 5) and is parallel to the line 4x + 2y = 10?
    15·1 answer
  • Simplify the following.
    14·1 answer
  • What is 1 &amp; 7\11 divided by 2&amp; 1/2 ? (fraction
    5·1 answer
  • Yo can someone help me out I wasn't paying attention I just need to find what x is.​
    6·1 answer
  • Write 6/10 as a terminating decimal .
    8·1 answer
  • Jerome made P points in the game . Harold made 11 fewer points than Jerome . How many points did Harold make in the games in ter
    14·2 answers
  • A pool gained 10 gallons of water on Friday due to rain. How could the owner of the pool bring the water level back to its previ
    10·1 answer
  • 2x+5y how do i simplify this or do i just leave this as that
    6·1 answer
  • Y=−5x2+ 6x− 3 y=−4x− 3<br><br> using elimination or subsutution
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!