1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vekshin1
2 years ago
12

Answer the question with explanation;​

Mathematics
2 answers:
PSYCHO15rus [73]2 years ago
7 0

Answer:

The statement in the question is wrong. The series actually diverges.

Step-by-step explanation:

We compute

\lim_{n\to\infty}\frac{n^2}{(n+1)^2}=\lim_{n\to\infty}\left(\frac{n^2}{n^2+2n+1}\cdot\frac{1/n^2}{1/n^2}\right)=\lim_{n\to\infty}\frac1{1+2/n+1/n^2}=\frac1{1+0+0}=1\ne0

Therefore, by the series divergence test, the series \sum_{n=1}^\infty\frac{n^2}{(n+1)^2} diverges.

EDIT: To VectorFundament120, if (x_n)_{n\in\mathbb N} is a sequence, both \lim x_n and \lim_{n\to\infty}x_n are common notation for its limit. The former is not wrong but I have switched to the latter if that helps.

elena-s [515]2 years ago
7 0

Answer:

\displaystyle \sum^{\infty}_{n = 1} \frac{n^2}{(n + 1)^2} = \text{div}

General Formulas and Concepts:

<u>Calculus</u>

Limits

  • Special Limit Rule [Coefficient Power Method]:                                         \displaystyle \lim_{x \to \pm \infty} \frac{ax^n}{bx^n} = \frac{a}{b}

Series Convergence Tests

  • nth Term Test:                                                                                               \displaystyle \sum^{\infty}_{n = 1} a_n \rightarrow \lim_{n \to \infty} a_n
  • Integral Test:                                                                                                 \displaystyle \sum^{\infty}_{n = a} f(n) \rightarrow \int\limits^{\infty}_a {f(x)} \, dx
  • P-Series:                                                                                                         \displaystyle \sum^{\infty}_{n = 1} \frac{1}{n^p}
  • Direct Comparison Test (DCT)
  • Limit Comparison Test (LCT)
  • Alternating Series Test (AST)
  • Ratio Test:                                                                                                     \displaystyle \sum^{\infty}_{n = 0} a_n \rightarrow \lim_{n \to \infty} \bigg| \frac{a_{n + 1}}{a_n} \bigg|

Step-by-step explanation:

*Note:

Always apply the nth Term Test as the first test to use for convergence.

Rules:

  1. If  \displaystyle  \lim_{n \to \infty} S_n = 0, then the nth Term Test is inconclusive.
  2. If  \displaystyle  \lim_{n \to \infty} S_n = l  (some number <em>l</em>), then the series is divergent by the nth Term Test.

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \sum^{\infty}_{n = 1} \frac{n^2}{(n + 1)^2}

<u>Step 2: Find Convergence</u>

  1. Substitute in variables [nth Term Test]:                                                       \displaystyle \sum^{\infty}_{n = 1} \frac{n^2}{(n + 1)^2} \rightarrow \lim_{n \to \infty} \frac{n^2}{(n + 1)^2}
  2. Expand:                                                                                                         \displaystyle \lim_{n \to \infty} \frac{n^2}{(n + 1)^2}= \lim_{n \to \infty} \frac{n^2}{n^2 + 2n + 1}
  3. Evaluate limit [Special Limit Rule - Coefficient Power Method]:                 \displaystyle \lim_{n \to \infty} \frac{n^2}{(n + 1)^2} = 1
  4. Compute [nth Term Test]:                                                                             \displaystyle \sum^{\infty}_{n = 1} \frac{n^2}{(n + 1)^2} = \text{div}

∴ by the nth Term Test, the series diverges.

Topic: AP Calculus BC (Calculus I + II)

Unit: Convergence Tests

You might be interested in
I need help please people help me
Oksi-84 [34.3K]
It is the first one on the left ( 4 divided by 7)
6 0
3 years ago
Which of the following represents the additive inverse of <img src="https://tex.z-dn.net/?f=2%2F3" id="TexFormula1" title="2/3"
PolarNik [594]
C)-2/3is the answer because when your have 2/3+-2/3 will equal 0 in which justifies the additive inverse
7 0
3 years ago
Read 2 more answers
What ordered pair corresponds to the vertex of the function
FromTheMoon [43]

Answer:A+b

by-step explanation:

3 0
3 years ago
Find the slope of the line through each pair of points.<br><br> (19, −2), (−11, 10)
Stels [109]

Answer:

slope = -\frac{2}{5}

Step-by-step explanation:

1) Calculate the slope using slope formula, \frac{y_2-y_1}{x_2-x_1}. Use the two points given, substitute their x and y values into the formula, and solve.

\frac{(10)-(-2)}{(-11)-(19)} \\= \frac{10+2}{-11-19} \\= \frac{12}{-30}\\= -\frac{2}{5}

Thus, the slope is -\frac{2}{5}.  

4 0
3 years ago
Factor completely 2c^5+44^4+242c^3<br>​
Amiraneli [1.4K]

Answer:

Is it 44c^4 ? Because if it is below is my answer;

Step-by-step explanation:

2c^3 (c + 11)^2

7 0
3 years ago
Other questions:
  • Jose is a child living in Argentina, where spring begins in September and ends in December. Because he sees the days getting lon
    14·1 answer
  • Evaluate log38, given log32 ≈ 0.631.
    15·2 answers
  • 13 POINTSS!! PLZ HELPP!! I WILL GIVE BRAINIEST
    8·2 answers
  • Add 3 feet 6 inches +8 feet 2 inches +4 inches +2feet 5 inches
    11·2 answers
  • Couldn’t figure out 3 of my questions
    12·2 answers
  • What is the length of stack P Q with bar on top ? Round to the nearest tenth of a unit.
    15·1 answer
  • Nuts.com sells raw almonds for $10 per pound and roasted pistachios for $12 per pound. Christopher spends $70, before taxes and
    13·1 answer
  • The school store marks up the price of all items by 30% before selling to
    9·1 answer
  • Name an angle of <br><br> B) 50°
    7·2 answers
  • find the area of this figure. round your answer to the nearest hundredth.use 3.14 to approximate pi.​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!