Answer:
feed = 220.77 kg/s; maximum production rate of solid crystal = 416 kg/s; the rate of supplying fresh feed to obtain the production rate = 1.6
Explanation:
Material or mass balance can be used to estimate the mass flow rates of all the streams in the diagram shown in the attached file.
Overall balance: 
Water: 
Using substitution method, we have:
= 220.77 kg/s
= 4.16 kg/s
The maximum production rate of solid crystal is
= 10*4.16 = 416 kg/s
Around evaporator:

kg/s
Around the mixing point:

Solid crystal: 
Using the last two equations, we can obtain:


kg/s
The rate of supplying fresh feed to obtain the production rate is:
= 352.5/220.77 = 1.6
Answer:
False
Explanation:
Forms of a given element that have a different number of neutrons are called isotopes.
Answer:. an ionic compound
Explanation:
If it conducts electricity when molten, then it is an ionic compound. No covalent compound conducts electricity in molten state because their crystal lattice is not composed of ions. There are ionic solids which conduct electricity when molten but are insoluble in water such as alumina Al2O3. The solid is soluble in strong acid solutions.
Answer:
pH = 2.46
Explanation:
Hello there!
In this case, since this neutralization reaction may be assumed to occur in a 1:1 mole ratio between the base and the strong acid, it is possible to write the following moles and volume-concentrations relationship for the equivalence point:

Whereas the moles of the salt are computed as shown below:

So we can divide those moles by the total volume (0.021L+0.0066L=0.0276L) to obtain the concentration of the final salt:
![[salt]=0.01428mol/0.0276L=0.517M](https://tex.z-dn.net/?f=%5Bsalt%5D%3D0.01428mol%2F0.0276L%3D0.517M)
Now, we need to keep in mind that this is an acidic salt since the base is weak and the acid strong, so the determinant ionization is:

Whose equilibrium expression is:
![Ka=\frac{[C_6H_5NH_2][H_3O^+]}{C_6H_5NH_3^+}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BC_6H_5NH_2%5D%5BH_3O%5E%2B%5D%7D%7BC_6H_5NH_3%5E%2B%7D)
Now, since the Kb of C6H5NH2 is 4.3 x 10^-10, its Ka is 2.326x10^-5 (Kw/Kb), we can also write:

Whereas x is:

Which also equals the concentration of hydrogen ions; therefore, the pH at the equivalence point is:

Regards!