Answer:
Answer: a) 20g of H2O (18.02 g/mol) molecules=6.68x10^23
Explanation:
In order to find the amount of molecules of each of the options, we need to follow the following equation.

So, let´s get the number of molecules for each of the options.





the smalest number is in option a)
Best of luck.
Answer:
c =0.2 J/g.°C
Explanation:
Given data:
Specific heat of material = ?
Mass of sample = 12 g
Heat absorbed = 48 J
Initial temperature = 20°C
Final temperature = 40°C
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 40°C -20°C
ΔT = 20°C
48 J = 12 g×c×20°C
48 J =240 g.°C×c
c = 48 J/240 g.°C
c =0.2 J/g.°C
Answer:
NaCl: ionic, HF: hydrogen bond, HCl: dipole dipole , F2: dispersion force
Explanation:
complete question is:
The four major attractive forces between particles are ionic bonds, dipole-dipole attractions, hydrogen bonds, and dispersion forces. Consider the compounds below, and classify each by its predominant attractive or intermolecular force among atoms or molecules of the same type.Identify each of the following ( NaCl, HF, HCl, F2) as Ionic, H Bonding, Dipole or Dispersion.
Answer:
29 L.
Explanation:
Hello!
In this case, considering that we are performing a conversion by which the time should be cancelled out to obtain liters, we first need to convert the seconds on bottom to hours and then the volume on top to liters, just a shown down below:

Which turns out 29 L with 2 significant figures.
Best regards!