A)
<h3>
The sample mean is 52</h3><h3>
The claimed population mean is 44</h3>
---------
The sample mean is the mean found in the survey (of the sample of people). The sample mean is found by adding up the values and dividing by the sample size n. The larger n gets, the closer the sample mean should get to the population mean. This is assuming the sample is random and representative of the population.
The population mean is a claim made by another study/survey/etc. Usually generalized statements such as "Americans spent an average of X dollars (in year Y)" would have X be considered the population mean.
==================================
B)
<h3>Sample mean is 3.42</h3><h3>Claimed population mean is 3.56</h3>
--------
Same idea as part A, but we're using different numbers and a different problem context.
==================================
Note: The year numbers and the sample sizes are not used to answer any of the four questions above.
Answer:
<h2><em>
Three to the three fifths power.</em></h2>
Step-by-step explanation:
The given expression is
![\sqrt{3\sqrt[5]{3} }](https://tex.z-dn.net/?f=%5Csqrt%7B3%5Csqrt%5B5%5D%7B3%7D%20%7D)
To simplify this expression, we have to use a specific power property which allow us to transform a root into a power with a fractional exponent, the property states:
![\sqrt[n]{x^{m}}=x^{\frac{m}{n}}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bx%5E%7Bm%7D%7D%3Dx%5E%7B%5Cfrac%7Bm%7D%7Bn%7D%7D)
Applying the property, we have:
![\sqrt{3\sqrt[5]{3}}=\sqrt{3(3)^{\frac{1}{5}}}=(3(3)^{\frac{1}{5}})^{\frac{1}{2}}](https://tex.z-dn.net/?f=%5Csqrt%7B3%5Csqrt%5B5%5D%7B3%7D%7D%3D%5Csqrt%7B3%283%29%5E%7B%5Cfrac%7B1%7D%7B5%7D%7D%7D%3D%283%283%29%5E%7B%5Cfrac%7B1%7D%7B5%7D%7D%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D)
Now, we multiply exponents:

Then, we sum exponents to get the simplest form:
![3^{\frac{1}{2}}3^{\frac{1}{10}}=3^{\frac{1}{2}+\frac{1}{10}} =3^{\frac{10+2}{20}}=3^{\frac{12}{20}} \\\therefore \sqrt{3\sqrt[5]{3}}=3^{\frac{3}{5} }](https://tex.z-dn.net/?f=3%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D3%5E%7B%5Cfrac%7B1%7D%7B10%7D%7D%3D3%5E%7B%5Cfrac%7B1%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B10%7D%7D%20%3D3%5E%7B%5Cfrac%7B10%2B2%7D%7B20%7D%7D%3D3%5E%7B%5Cfrac%7B12%7D%7B20%7D%7D%20%20%5C%5C%5Ctherefore%20%5Csqrt%7B3%5Csqrt%5B5%5D%7B3%7D%7D%3D3%5E%7B%5Cfrac%7B3%7D%7B5%7D%20%7D)
Therefore, the right answer is <em>three to the three fifths power.</em>
Answer:
$1,344,300
Step-by-step explanation:
The difference on a yearly basis is ...
$80,000 -35,190 = $44,810
Over 30 years, that difference adds up to ...
$44,810 × 30 = $1,344,300
Answer:
sorry cant answer
Step-by-step explanation:
Answer: C
Step-by-step explanation: