-3x + is greater than or equal to 35
hope this helps!
Answer:
Maintaining a balanced budget ensures monthly obligations are met, with room for savings.With stable cash flow,monthly surpluses can be reserved in an emergency,xontingency fund, standing ready to bail you out of times of financial distress
Answer:
the answer is 12.24 .
Step-by-step explanation:
that answer is right is because when you add of those you get 530 , then you divide by how many numbers there are which is 7 , which equals to 75.7 . when you get that number ( 75.7) you subtract that number to 65,90,85,70,70,95, and 55 . when you get the total of all of those you add those . which is 10.7, 14.3 , 9.3 , 5.7 , 5.7 , 19.3 , and 20.7 . from adding those you get 85.7. you divide by 7 and get 12.24 . hope this helps :) .
Answer:
The answer will be 5.701
Step-by-step explanation:
Find the square root of the area of the square
Answer:
City @ 2017 = 8,920,800
Suburbs @ 2017 = 1, 897, 200
Step-by-step explanation:
Solution:
- Let p_c be the population in the city ( in a given year ) and p_s is the population in the suburbs ( in a given year ) . The first sentence tell us that populations p_c' and p_s' for next year would be:
0.94*p_c + 0.04*p_s = p_c'
0.06*p_c + 0.96*p_s = p_s'
- Assuming 6% moved while remaining 94% remained settled at the time of migrations.
- The matrix representation is as follows:
- In the sequence for where x_k denotes population of kth year and x_k+1 denotes population of x_k+1 year. We have:
![\left[\begin{array}{cc}0.94&0.04\\0.06&0.96\end{array}\right] x_k = x_k_+_1](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0.94%260.04%5C%5C0.06%260.96%5Cend%7Barray%7D%5Cright%5D%20x_k%20%3D%20x_k_%2B_1)
- Let x_o be the populations defined given as 10,000,000 and 800,000 respectively for city and suburbs. We will have a population x_1 as a vector for year 2016 as follows:
![\left[\begin{array}{cc}0.94&0.04\\0.06&0.96\end{array}\right] x_o = x_1](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0.94%260.04%5C%5C0.06%260.96%5Cend%7Barray%7D%5Cright%5D%20x_o%20%3D%20x_1)
- To get the population in year 2017 we will multiply the migration matrix to the population vector x_1 in 2016 to obtain x_2.
![x_2 = \left[\begin{array}{cc}0.94&0.04\\0.06&0.96\end{array}\right]\left[\begin{array}{cc}0.94&0.04\\0.06&0.96\end{array}\right] x_o](https://tex.z-dn.net/?f=x_2%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0.94%260.04%5C%5C0.06%260.96%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0.94%260.04%5C%5C0.06%260.96%5Cend%7Barray%7D%5Cright%5D%20x_o)
- Where,
![x_o = \left[\begin{array}{c}10,000,000\\800,000\end{array}\right]](https://tex.z-dn.net/?f=x_o%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D10%2C000%2C000%5C%5C800%2C000%5Cend%7Barray%7D%5Cright%5D)
- The population in 2017 x_2 would be:
![x_2 = \left[\begin{array}{cc}0.94&0.04\\0.06&0.96\end{array}\right]\left[\begin{array}{cc}0.94&0.04\\0.06&0.96\end{array}\right] \left[\begin{array}{c}10,000,000\\800,000\end{array}\right] \\\\\\x_2 = \left[\begin{array}{c}8,920,800\\1,879,200\end{array}\right]](https://tex.z-dn.net/?f=x_2%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0.94%260.04%5C%5C0.06%260.96%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0.94%260.04%5C%5C0.06%260.96%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D10%2C000%2C000%5C%5C800%2C000%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5C%5Cx_2%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%2C920%2C800%5C%5C1%2C879%2C200%5Cend%7Barray%7D%5Cright%5D)