1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ser-zykov [4K]
3 years ago
14

What is greater than 1 cup

Mathematics
1 answer:
77julia77 [94]3 years ago
5 0
2 cups your welcome
You might be interested in
Find the average montly loss of a conpany with a loss of 36,000 for one year. What's the equation?
algol13
36,00÷ 12= 3,000 so that would be the average monthly loss.
5 0
3 years ago
How many equivalence relations are there on the set 1, 2, 3]?
Alex787 [66]

Answer:

We need to find how many number of equivalence relations are on the set {1,2,3}

A relation is an equivalence relation if it is reflexive, transitive and symmetric.

equivalence relation R on {1,2,3}

1.For reflexive, it must contain (1,1),(2,2),(3,3)

2.For transitive, it must satisfy: if (x,y)∈R then (y,x)∈R

3. For symmetric, it must satisfy: if (x,y)∈R,(y,z)∈R then (x,z)∈R

Since (1,1),(2,2),(3,3) must be there is R, (1,2),(2,1),(2,3),(3,2),(1,3),(3,1). By symmetry,

we just need to count the number of ways in which we can use the pairs (1,2),(2,3),(1,3) to construct equivalence relations.

This is because if (1,2) is in the relation then (2,1) must be there in the relation.

the relation will be an equivalence relation if we use none of these pairs (1,2),(2,3),(1,3) . There is only one such relation: {(1,1),(2,2),(3,3)}

we can have three possible equivalence relations:

{(1,1),(2,2),(3,3),(1,2),(2,1)}

{(1,1),(2,2),(3,3),(1,3),(3,1)}

{(1,1),(2,2),(3,3),(2,3),(3,2)}

6 0
3 years ago
I'll give brainiest , 5 stares help​
matrenka [14]
3 the answer is 3......................
5 0
3 years ago
What times 2 equels -108
Igoryamba
-54 i think is the answer 
8 0
4 years ago
Read 2 more answers
The line 5x – 5y = 2 intersects the curve x2y – 5x + y + 2 = 0 at
inna [77]

Answer:

(a) The coordinates of the points of intersection are (-2, -12/5), (2/5, 0), and (2, 8/5)

(b) The gradient of the curve at each point of intersection are;

Gradient at (-2, -12/5) = -0.92

Gradient at (2/5, 0) = 4.3

Gradient at (2, 8/5) = -0.28

Step-by-step explanation:

The equations of the lines are;

5·x - 5·y = 2......(1)

x²·y - 5·x + y + 2 = 0.......(2)

Making y the subject of equation (1) gives;

5·y = 5·x - 2

y = (5·x - 2)/5

Making y the subject of equation (2) gives;

y·(x² + 1) - 5·x + 2 = 0

y = (5·x - 2)/(x² + 1)

Therefore, at the point the two lines intersect their coordinates are equal thus we have;

y = (5·x - 2)/5 = y = (5·x - 2)/(x² + 1)

Which gives;

\dfrac{5 \cdot x - 2}{5} = \dfrac{5 \cdot x - 2}{x^2 + 1}

Therefore, 5 = x² + 1

x² = 5 - 1 = 4

x = √4 = 2

Which is an indication that the x-coordinate is equal to 2

The y-coordinate is therefore;

y = (5·x - 2)/5 = (5 × 2 - 2)/5 = 8/5

The coordinates of the points of intersection = (2, 8/5}

Cross multiplying the following equation

Substituting the value for y in equation (2) with (5·x - 2)/5 gives;

\dfrac{5 \cdot x^3 - 2 \cdot x^2 - 20 \cdot x + 8}{5} = 0

Therefore;

5·x³ - 2·x² - 20·x + 8 = 0

(x - 2)×(5·x² - b·x + c) = 5·x³ - 2·x² - 20·x + 8

Therefore, we have;

x²·b - 2·x·b -x·c + 2·c -5·x³ + 10·x²

5·x³ - 10·x² - x²·b + 2·x·b + x·c - 2·c = 5·x³ - 2·x² - 20·x + 8

∴ c = 8/(-2) = -4

2·b + c = - 20

b = -16/2 = -8

Therefore;

(x - 2)×(5·x² - b·x + c) = (x - 2)×(5·x² + 8·x - 4)

(x - 2)×(5·x² + 8·x - 4) = 0

5·x² + 8·x - 4 = 0

x² + 8/5·x - 4/5  = 0

(x + 4/5)² - (4/5)² - 4/5 = 0

(x + 4/5)² = 36/25

x + 4/5 = ±6/5

x = 6/5 - 4/5 = 2/5 or -6/5 - 4/5 = -2

Hence the three x-coordinates are

x = 2, x = - 2, and x = 2/5

The y-coordinates are derived from y = (5·x - 2)/5 as y = 8/5, y = -12/5, and y = y = 0

The coordinates of the points of intersection are (-2, -12/5), (2/5, 0), and (2, 8/5)

(b) The gradient of the curve, \dfrac{\mathrm{d} y}{\mathrm{d} x}, is given by the differentiation of the equation of the curve, x²·y - 5·x + y + 2 = 0 which is the same as y = (5·x - 2)/(x² + 1)

Therefore, we have;

\dfrac{\mathrm{d} y}{\mathrm{d} x}= \dfrac{\mathrm{d} \left (\dfrac{5 \cdot x - 2}{x^2 + 1}  \right )}{\mathrm{d} x} = \dfrac{5\cdot \left ( x^{2} +1\right )-\left ( 5\cdot x-2 \right )\cdot 2\cdot x}{\left (x^2 + 1 ^{2} \right )}.......(3)

Which gives by plugging in the value of x in the slope equation;

At x = -2, \dfrac{\mathrm{d} y}{\mathrm{d} x} = -0.92

At x = 2/5, \dfrac{\mathrm{d} y}{\mathrm{d} x} = 4.3

At x = 2, \dfrac{\mathrm{d} y}{\mathrm{d} x} = -0.28

Therefore;

Gradient at (-2, -12/5) = -0.92

Gradient at (2/5, 0) = 4.3

Gradient at (2, 8/5) = -0.28.

7 0
3 years ago
Other questions:
  • Simplify to create an equivalent expression. 2(−n−3)−7(5+2n)
    11·1 answer
  • At Store 1 I can buy 36 oz of baby formula for $26.62, and at Store 2 I can buy 28 oz of baby formula for $22.42. Which one is a
    6·2 answers
  • What is 534.076 rounded to the nearest hundredth? A. 534.07 B. 534 C. 500 D. 534.08
    13·2 answers
  • Ms. Rodriguez broyght 10 oranges for afternoon snak that she needs to share evenly with the 15 players on her daughters soccer t
    9·1 answer
  • Graph the inequality 4x+5y>20
    11·1 answer
  • Simplify.
    6·2 answers
  • Find the perimeter. Simplify your answer.<br> 7z+5<br> 22-1<br> 32-9<br> 62+3
    13·1 answer
  • 1/3 of 3 feet = how many inches
    13·1 answer
  • A stained glass window has the dimensions shown. What is the perimeter of the hole that should be cut in the wall in order for t
    6·1 answer
  • A baker knows that the daily demand for strawberry pies is a random variable that follows the normal distribution with a mean of
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!