Put the equation given in the form

The center will be (-f, -g)
Answer:
C. Kalena made a mistake in Step 3. The justification should state: -x²
+ x²
Step-by-step explanation:
Given the function x(x - 1)(x + 1) = x3 - X
To justify kelena proof
We will need to show if the two equations are equal.
Starting from the RHS with function x³-x
First we will factor out the common factor which is 'x' to have;
x(x²-1)
Factorising x²-1 using the difference of two square will give;
x(x+1)(x-1)
Note that for two real number a and b, the expansion of a²-b² using difference vof two square will give;
a²-b² = (a+b)(a-b) hence;
Factorising x²-1 using the difference of two square will give;
x(x+1)(x-1)
Factorising x(x+1) gives x²+x, therefore
x(x+1)(x-1) = (x²+x)(x-1)
(x²+x)(x-1) = x³-x²+x²-x
The function x³-x²+x²-x gotten shows that kelena made a mistake in step 3, the justification should be -x²+x² not -x-x²
Answer:2m^2+mn+2m+9n-3
Step-by-step explanation:
m(2+n-m)+3(3n+m^2-1)
open brackets
2m+mn-m^2+9n+3m^2-3
Collect like terms
3m^2-m^2+mn+2m+9n-3
2m^2+mn+2m+9n-3