Answer:
31.75 m/s
Explanation:
h = 41.7 m
Let the initial velocity of the second stone is u
Let the time taken to reach to the bottom by the first stone is t then the time taken by the second stone to reach the ground is t - 1.8.
For first stone:
Use second equation of motion

Here, u = 0, g = 9.8 m/s^2 and t be the time and h = 41.7
So, 41.7= 0 + 0.5 x 9.8 x t^2
41.7 = 4.9 t^2
t = 2.92 s ..... (1)
For second stone:
Use second equation of motion

Here, g = 9.8 m/s^2 and time taken is t - 1.8 = 2.92 - 1.8 = 1.12 s, h = 41.7 m and u be the initial velocity
.... (2)
By equation the equation (1) and (2), we get

u = 31.75 m/s
Answer:
ξ = 0.00845020162 V or 8.4 mV
Explanation:
Magnetic flux measures the total magnetic field that passes through a known area. Magnetic flux describe the effect of magnetic field in a given area. Mathematically,
magnetic flux (Ф) = BA cos ∅
where
A = test area
B = magnetic field
before the flip
Ф = Bπr²N
N = number of turn
magnitude of induced emf = N |ΔФ/Δt|
ξ = 2Nπr²B/dt
ξ = 2 × 22 × π × (1.02/2)² × 0.000047/0.2
ξ = 44 × π × 0.51² × 0.000047/0.2
ξ = 44 × π × 0.2601 × 0.000047/0.2
ξ = 0.0005378868 × 3.142/0.2
ξ = 0.00169004032/0.2
ξ = 0.00845020162 V or 8.4 mV
Answer:
0.56 atm
Explanation:
First of all, we need to find the number of moles of the gas.
We know that
m = 1.00 g is the mass of the gas
is the molar mass of the carbon dioxide
So, the number of moles of the gas is

Now we can find the pressure of the gas by using the ideal gas equation:

where
p is the pressure
is the volume
n = 0.023 mol is the number of moles
is the gas constant
is the temperature of the gas
Solving the equation for p, we find

And since we have

the pressure in atmospheres is

Answer
Magma is less dense compared to the surrounding rock.
the overlying rock creates pressure which forces the magma to be directed upward.
Explanation:
at high temperatures the magma is liquid form with the high energy which causes the formation of bonds and the pressure build up creates the increase channeling of the liquid.as the temperature decreases the magma moves into the surface