Answer:
a)143.8 decays/minute
b)0.41 decays/minute
Explanation:
From;
0.693/t1/2 = 2.303/t log (Ao/A)
Where;
t1/2=half-life of C-14= 5670 years
t= time taken to decay
Ao= activity of a living sample
A= activity of the sample under study
a)
0.693/5670 = 2.303/1000 log(162.5/A)
1.22×10^-4 = 2.303×10^-3 log(162.5/A)
1.22×10^-4/2.303×10^-3 = log(162.5/A)
0.53 × 10^-1 = log(162.5/A)
5.3 × 10^-2 = log(162.5/A)
162.5/A = Antilog (5.3 × 10^-2 )
A= 162.5/1.13
A= 143.8 decays/minute
b)
0.693/5670 = 2.303/50000 log(162.5/A)
1.22×10^-4 = 4.61×10^-5 log(162.5/A)
1.22×10^-4/4.61×10^-5 = log(162.5/A)
0.26 × 10^1 = log(162.5/A)
2.6= log(162.5/A)
162.5/A = Antilog (2.6 )
A= 162.5/398.1
A= 0.41 decays/minute