Answer:
(C) Only if it starts moving
Explanation:
We know that work done is given by

So there are two case in which work done is zero
First case is that when force and displacement are perpendicular to each other
And other case is that when there is no displacement
So for work to be done there must have displacement, if there is no displacement then there is no work done
So option (c) will be the correct option
Let's ask this question step by step:
Part A)
a x b = (3.0i + 5.0j) x (2.0i + 4.0j) = (12-10) k = 2k
ab = (3.0i + 5.0j). (2.0i + 4.0j) = 6 + 20 = 26
Part (c)
(a + b) b = [(3.0i + 5.0j) + (2.0i + 4.0j)]. (2.0i + 4.0j)
(a + b) b = (5.0i + 9.0j). (2.0i + 4.0j)
(a + b) b = 10 + 36
(a + b) b = 46
Part (d)
comp (ba) = (a.b) / lbl
a.b = (3.0i + 5.0j). (2.0i + 4.0j) = 6 + 20 = 26
lbl = root ((2.0) ^ 2 + (4.0) ^ 2) = root (20)
comp (ba) = 26 / root (20)
answer
2k
26
46
26 / root (20)
Answer: Both cannonballs will hit the ground at the same time.
Explanation:
Suppose that a given object is on the air. The only force acting on the object (if we ignore air friction and such) will be the gravitational force.
then the acceleration equation is only on the vertical axis, and can be written as:
a(t) = -(9.8 m/s^2)
Now, to get the vertical velocity equation, we need to integrate over time.
v(t) = -(9.8 m/s^2)*t + v0
Where v0 is the initial velocity of the object in the vertical axis.
if the object is dropped (or it only has initial velocity on the horizontal axis) then v0 = 0m/s
and:
v(t) = -(9.8 m/s^2)*t
Now, if two objects are initially at the same height (both cannonballs start 1 m above the ground)
And both objects have the same vertical velocity, we can conclude that both objects will hit the ground at the same time.
You can notice that the fact that one ball is fired horizontally and the other is only dropped does not affect this, because we only analyze the vertical problem, not the horizontal one. (This is something useful to remember, we can separate the vertical and horizontal movement in these type of problems)
Answer:
The Most Famous Astronomers of All Time. Karl Tate, SPACE.com. ...
Claudius Ptolemy. Bartolomeu Velho, Public Domain. ...
Nicolaus Copernicus. Public Domain. ...
Johannes Kepler. NASA Goddard Space Flight Center Sun-Earth Day. ...
Galileo Galilei. NASA
Answer:
Technician B
Explanation:
here on analyzing both the statements from technician A and technician B. The Statement from Technician B is more logical and correct. That the power-assisted brake system reduces the force that the driver must exert on the brake pedal.
The power-assisted brake system does not reduce the distance of stopping. What it does is it reduces the force to be applied by the driver. Thus, making the drive more comfortable.