Answer:
the potential energy of this body is 245 J.
Explanation:
Given;
mass of the body, m = 250 g = 0.25 kg
height from which the body was dropped, h = 100 m
acceleration due to gravity, g = 9.8 m/s²
The potential energy of this body is calculated as;
P.E = mgh
substitute the given values and solve for the potential energy of this body;
P.E = 0.25 x 9.8 x 100
P.E = 245 J.
Therefore, the potential energy of this body is 245 J.
Answer:
Explanation:El ejercicio vigoroso previene en mayor medida el síndrome metabólico (un conjunto de enfermedades que aumentan el riesgo cardiovascular )
mientras que una reacción vigorosa se produce entre el aluminio y el gas cloro. Como consecuencia de la gran cantidad de energía liberada se producen luz y calor
Answer:
Clockwise
Explanation:
All of the planets rotate the same way around the sun.
Ok, assuming "mj" in the question is Megajoules MJ) you need a total amount of rotational kinetic energy in the fly wheel at the beginning of the trip that equals
(2.4e6 J/km)x(300 km)=7.2e8 J
The expression for rotational kinetic energy is
E = (1/2)Iω²
where I is the moment of inertia of the fly wheel and ω is the angular velocity.
So this comes down to finding the value of I that gives the required energy. We know the mass is 101kg. The formula for a solid cylinder's moment of inertia is
I = (1/2)mR²
We want (1/2)Iω² = 7.2e8 J and we know ω is limited to 470 revs/sec. However, ω must be in radians per second so multiply it by 2π to get
ω = 2953.1 rad/s
Now let's use this to solve the energy equation, E = (1/2)Iω², for I:
I = 2(7.2e8 J)/(2953.1 rad/s)² = 165.12 kg·m²
Now find the radius R,
165.12 kg·m² = (1/2)(101)R²,
√(2·165/101) = 1.807m
R = 1.807m