1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
avanturin [10]
3 years ago
8

Which of these statements best explains why it is difficult to see outside at night?

Physics
2 answers:
xeze [42]3 years ago
7 0

Answer:

the answer is b

Explanation:

anyanavicka [17]3 years ago
4 0
B is the awser 
good luck and hope it helps 
You might be interested in
Nuclear fusion is when two atoms of __________________ join together to form _____________.
solong [7]

Answer:

1. Hydrogen
2. Helium

Explanation:

Nuclear fusion is when two atoms of Hydrogen join together to form one Helium atom.

3 0
2 years ago
What force is represented by the vector?
choli [55]
Well I think B hope this helps
8 0
2 years ago
Read 2 more answers
Jeff is a landscaping contractor and lifts a rock weighing 600 pounds by wedging a board under the rock. Jeff weighs 150 pounds
jonny [76]

Answer: 4

The mechanical advantage is the ratio of the force exerted  by the object to the force applied to do work on it.

Here, Jeff tried to lift a rock weighing 600 pounds by wedging board under the rock. Jeff who weighs 150 pounds uses all his weight to exert force on lever and lift rock.

Mechanical advantage, M.A.=\frac{weight\hspace{1mm}of\hspace{1 mm}rock}{weight\hspace{1mm}of\hspace{1 mm}Jeff}=\frac{600 pounds}{150 pounds}=4.

Therefore, the mechanical advantage that lever provided to Jeff in lifting rock is 4.

6 0
2 years ago
Read 2 more answers
A 70.0-kg person throws a 0.0480-kg snowball forward with a ground speed of 33.5 m/s. A second person, with a mass of 55.0 kg, c
saw5 [17]

Answer:

The final velocity of the thrower is \bf{3.88~m/s} and the final velocity of the catcher is \bf{0.029~m/s}.

Explanation:

Given:

The mass of the thrower, m_{t} = 70~Kg.

The mass of the catcher, m_{c} = 55~Kg.

The mass of the ball, m_{b} = 0.0480~Kg.

Initial velocity of the thrower, v_{it} = 3.90~m/s

Final velocity of the ball, v_{fb} = 33.5~m/s

Initial velocity of the catcher, v_{ic} = 0~m/s

Consider that the final velocity of the thrower is v_{ft}. From the conservation of momentum,

&& m_{t}v_{ft} + m_{b}v_{fb} = (m_{t} + m_{b})v_{it}\\&or,& v_{ft} = \dfrac{(m_{t} + m_{b})v_{it} - m_{b}v_{fb}}{m_{t}}\\&or,& v_{ft} = \dfrac{(70 + 0.0480)(3.90) - (0.0480)(33.5)}{70}\\&or,& v_{ft} = 3.88~m/s

Consider that the final velocity of the catcher is v_{fc}. From the conservation of momentum,

&& (m_{c} + m_{b})v_{fc} = m_{b}v_{it}\\&or,& v_{fc} = \dfrac{m_{b}v_{it}}{(m_{c} + m_{b})}\\&or,& v_{fc} = \dfrac{(0.048)(33.5)}{(55.0 + 0.0480)}\\&or,& v_{fc} = 0.029~m/s

Thus, the final velocity of thrower is 3.88~m/s and that for the catcher is 0.029~m/s.

8 0
2 years ago
Planetary orbits... are spaced more closely together as they get further from the Sun. are evenly spaced throughout the solar sy
BaLLatris [955]

Answer:

E) are almost circular, with low eccentricities.

Explanation:

Kepler's laws establish that:

All the planets revolve around the Sun in an elliptic orbit, with the Sun in one of the focus (Kepler's first law).

A planet describes equal areas in equal times (Kepler's second law).

The square of the period of a planet will be proportional to the cube of the semi-major axis of its orbit (Kepler's third law).

T^{2} = a^{3}

Where T is the period of revolution and a is the semi-major axis.

Planets orbit around the Sun in an ellipse with the Sun in one of the focus. Because of that, it is not possible to the Sun to be at the center of the orbit, as the statement on option "C" says.

However, those orbits have low eccentricities (remember that an eccentricity = 0 corresponds to a circle)

In some moments of their orbit, planets will be closer to the Sun (known as perihelion). According with Kepler's second law to complete the same area in the same time, they have to speed up at their perihelion and slow down at their aphelion (point farther from the Sun in their orbit).

Therefore, option A and B can not be true.

In the celestial sphere, the path that the Sun moves in a period of a year is called ecliptic, and planets pass very closely to that path.  

4 0
3 years ago
Other questions:
  • For all simple machines, when the output force is greater than the input force,
    11·1 answer
  • - True or false: A 100 kilogram moon rock has more inertia on Earth than it does on the Moon.
    12·1 answer
  • A runner runs a 1,500 m race on a circular track. The runner stops 100 m from the starting point. What are the distance and disp
    11·1 answer
  • What is the speed of light in a vacuum
    7·2 answers
  • Determine the area of a rectangle having a length of 41.6 cm and a width of 2.3 cm
    8·1 answer
  • State what is meant by a gravitational potential at point A is -1·70 × 109 J kg-1.​
    8·1 answer
  • A honeybee is in flight between a flower and its hive. Which of the following statements is true?
    14·1 answer
  • A planet's distance from the sun is 2.0x10^11 m. what is the orbital period?
    8·1 answer
  • Starting velocity: 50 m/s
    6·1 answer
  • The range of diameters and luminosities displayed by elliptical galaxies is ____.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!