Anything less dense than water will float, like oil. Anything more dense than water will sink, like rock.
Answer:

Explanation:
Acceleration is given by

where
is the change in velocity
is the time interval in which the change in velocity occurs
To find the acceleration at 1 second, we can take the data at t = 1 s and t = 2. We find:


So, the acceleration is

Answer:
Explanation:
We shall represent displacement in vector form .Consider east as x axes and north as Y axes west as - ve x axes and south as - ve Y axes . 255 km can be represented by the following vector
D₁ = - 255 cos 49 i + 255 sin49 j
= - 167.29 i + 192.45 j
Let D₂ be the further displacement which lands him 125 km east . So the resultant displacement is
D = 125 i
So
D₁ + D₂ = D
- 167.29 i + 192.45 j + D₂ = 125 i
D₂ = 125 i + 167.29 i - 192.45 j
= 292.29 i - 192.45 j
Angle of D₂ with x axes θ
tan θ = -192.45 / 292.29
= - 0.658
θ = 33.33 south of east
Magnitude of D₂
D₂² = ( 192.45)² + ( 292.29)²
D₂ = 350 km approx
Tan
1.549×10-19lJ is the energy of a photon emitted when an electron in a hydrogen atom undergoes a transition from =7 to =1.
The equation E= hcE =hc, where h is Planck's constant and c is the speed of light, describes the inverse relationship between a photon's energy (E) and the wavelength of light ().
The Rydberg formula is used to determine the energy change.
Rydberg's original formula used wavelengths, but we may rewrite it using units of energy instead. The result is the following.
aaΔE=R(1n2f−1n2i) aa
were
2.17810-18lJ is the Rydberg constant.
The initial and ultimate energy levels are ni and nf.
As a change of pace from
n=5 to n=3 gives us
ΔE
=2.178×10-18lJ (132−152)
=2.178×10-18lJ (19−125)
=2.178×10-18lJ×25 - 9/25×9
=2.178×10-18lJ×16/225
=1.549×10-19lJ
Learn more about Rydberg formula here-
brainly.com/question/13185515
#SPJ4
Answer:
(a) ε = 1373.8.
(b) The wingtip which is at higher potential.
Explanation:
(a) Finding the potential difference between the airplane wingtips.
Given the parameters
wingspan of the plane is = 18.0m
speed of the plane in north direction is = 70.0m/s
magnetic field of the earth is = 1.20μT
The potential difference is given as:
ε = Blv
where ε = potential difference of wingtips
B = magnetic field of earth
l = wingspan of airplane
v = speed of airplane
ε = 1.2 x 18.0 x 63.6
ε = 1373.8
(b) Which wingtip is at higher potential?
The wingtip which is at higher potential.