Answer:
B. The effects of warmed water on aquatic life
Explanation:
quizizz
This problem is simply converting the concentration from molality to molarity. Molality has units of mol solute/kg solvent, while molarity has units of mol solute/L solution.
2.24 mol H2SO4/kg H2O * (0.25806 kg H2SO4/mol H2SO4) = 0.578 kg H2SO4/kg H2O
That means the solution weighs a total of 1 kg + 0.578 kg = 1.578 kg. Then, convert it to liters using the density data:
1.578 kg * (1000g / 1kg) * (1 mL/1.135 g) = 1390 mL or 1.39 L.
Hence, the molarity is
2.24/1.39 = 1.61 M
Answer:
(FeSCN⁺²) = 0.11 mM
Explanation:
Fe ( NO3)3 (aq) [0.200M] + KSCN (aq) [ 0.002M] ⇒ FeSCN+2
M (Fe(NO₃)₃ = 0.200 M
V (Fe(NO₃)₃ = 10.63 mL
n (Fe(NO₃)₃ = 0.200*10.63 = 2.126 mmol
M (KSCN) = 0.00200 M
V (KSCN) = 1.42 mL
n (KSCN) = 0.00200 * 1.42 = 0.00284 mmol
Total volume = V (Fe(NO₃)₃ + V (KSCN)
= 10.63 + 1.42
= 12.05 mL
Limiting reactant = KSCN
So,
FeSCN⁺² = 0.00284 mmol
M (FeSCN⁺²) = 0.00284/12.05
= 0.000236 M
Excess reactant = (Fe(NO₃)₃
n(Fe(NO₃)₃ = 2.126 mmol - 0.00284 mmol
=2.123 mmol
For standard 2:
n (FeSCN⁺²) = 0.000236 * 4.63
=0.00109
V(standard 2) = 4.63 + 5.17
= 9.8 mL
M (FeSCN⁺²) = 0.00109/9.8
= 0.000111 M = 0.11 mM
Therefore, (FeSCN⁺²) = 0.11 mM
Answer:
4.75 is the equilibrium constant for the reaction.
Explanation:

Equilibrium concentration of reactants :
![[CO]=0.0590 M,[H_2O]=0.00600 M](https://tex.z-dn.net/?f=%5BCO%5D%3D0.0590%20M%2C%5BH_2O%5D%3D0.00600%20M)
Equilibrium concentration of products:
![[CO_2]=0.0410 M,[H_2]=0.0410 M](https://tex.z-dn.net/?f=%5BCO_2%5D%3D0.0410%20M%2C%5BH_2%5D%3D0.0410%20M)
The expression of an equilibrium constant is given by :
![K_c=\frac{[CO_2][H_2]}{[CO][H_2O]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCO_2%5D%5BH_2%5D%7D%7B%5BCO%5D%5BH_2O%5D%7D)


4.75 is the equilibrium constant for the reaction.
Answer:yes
Explanation:
this is because the distance doesnt matter