1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nydimaria [60]
3 years ago
6

Simplify the following expression by combining like terms.

Mathematics
1 answer:
skelet666 [1.2K]3 years ago
3 0

Answer:

2x² + 5x

Step-by-step explanation:

Given

3x² + 4x - x² + x ← collect like terms

= (3 - 1)x² + (4 + 1)x

= 2x² + 5x

You might be interested in
Write the equation -4x^2+9y^2+32x+36y-64=0 in standard form. Please show me each step of the process!
IgorC [24]
Hey there, hope I can help!

-4x^2+9y^2+32x+36y-64=0

\mathrm{Add\:}64\mathrm{\:to\:both\:sides} \ \textgreater \  9y^2+32x+36y-4x^2=64

\mathrm{Factor\:out\:coefficient\:of\:square\:terms} \ \textgreater \  -4\left(x^2-8x\right)+9\left(y^2+4y\right)=64

\mathrm{Divide\:by\:coefficient\:of\:square\:terms:\:}4
-\left(x^2-8x\right)+\frac{9}{4}\left(y^2+4y\right)=16

\mathrm{Divide\:by\:coefficient\:of\:square\:terms:\:}9
-\frac{1}{9}\left(x^2-8x\right)+\frac{1}{4}\left(y^2+4y\right)=\frac{16}{9}

\mathrm{Convert}\:x\:\mathrm{to\:square\:form}
-\frac{1}{9}\left(x^2-8x+16\right)+\frac{1}{4}\left(y^2+4y\right)=\frac{16}{9}-\frac{1}{9}\left(16\right)

\mathrm{Convert\:to\:square\:form}
-\frac{1}{9}\left(x-4\right)^2+\frac{1}{4}\left(y^2+4y\right)=\frac{16}{9}-\frac{1}{9}\left(16\right)

\mathrm{Convert}\:y\:\mathrm{to\:square\:form}
-\frac{1}{9}\left(x-4\right)^2+\frac{1}{4}\left(y^2+4y+4\right)=\frac{16}{9}-\frac{1}{9}\left(16\right)+\frac{1}{4}\left(4\right)

\mathrm{Convert\:to\:square\:form}
-\frac{1}{9}\left(x-4\right)^2+\frac{1}{4}\left(y+2\right)^2=\frac{16}{9}-\frac{1}{9}\left(16\right)+\frac{1}{4}\left(4\right)

\mathrm{Refine\:}\frac{16}{9}-\frac{1}{9}\left(16\right)+\frac{1}{4}\left(4\right) \ \textgreater \  -\frac{1}{9}\left(x-4\right)^2+\frac{1}{4}\left(y+2\right)^2=1

Refine\;once\;more\;-\frac{\left(x-4\right)^2}{9}+\frac{\left(y+2\right)^2}{4}=1

For me I used
\frac{\left(y-k\right)^2}{a^2}-\frac{\left(x-h\right)^2}{b^2}= 1
As\;\mathrm{it\;\:is\:the\:standard\:equation\:for\:an\:up-down\:facing\:hyperbola}

I know yours is an equation which is why I did not go any further because this is the standard form you are looking for. I would rewrite mine to get my hyperbola standard form. However the one I have provided is the form you need where mine would be.
\frac{\left(y-\left(-2\right)\right)^2}{2^2}-\frac{\left(x-4\right)^2}{3^2}=1

Hope this helps!
4 0
3 years ago
Find the 43rd term of the sequence<br><br> -3.0,-2.5,-2.0,-1.5
Nana76 [90]

Answer:

19.5

Step-by-step explanation:

The 43rd term of the sequence is 19.5

6 0
3 years ago
Distance between (-10,9) and (-5,2)
jonny [76]

Answer:

8.60 units (3 s.f.)

Step-by-step explanation:

The distance between 2 points is given by the formula:

\sqrt{(y1 - y2)^{2} +  {(x1 - x2)}^{2}  }

Thus using the above formula,

Distance between (-10, 9) and (-5, 2)

=  \sqrt{ {(9 - 2)}^{2}  +  {( - 10 + 5)}^{2} }  \\  =  \sqrt{ {7}^{2}  + ( - 5)^{2} }  \\  =  \sqrt{74}  \\  = 8.60 \: units \: (3 \: s.f.)

8 0
3 years ago
What is the value of w?<br><br><br> A.) 7<br> B.) 3.5<br> C.) 7 square root of 3<br> D.) 14
sammy [17]
D. 14 

LL = 1/2 * Hsqrt3
7sqrt3 = 1/2 * ysqrt3
24.25 = ysqrt3
24.25/sqrt3 = y
y = 14
4 0
3 years ago
Read 2 more answers
What is the distance between the points (2,10) and (-6, 4) on the coordinate
stellarik [79]

Answer:

The distance between the given points (2,10) and (-6, 4) on the coordinate  plane is 10units

Therefore distance s=10 units

Step-by-step explanation:

Given points are (2,10) and (-6, 4) on the coordinate plane

To distance between the given points :

The distance formula is s=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2} units

Let (x_1,y_1) ,(x_2,y_2) be the given points (2,10) and (-6, 4) respectively

Now substituting the values in the distance formula  we get

s=\sqrt{(-6-2)^2+(4-10)^2}

=\sqrt{(-8)^2+(-6)^2}

=\sqrt{8^2+6^2}

=\sqrt{64+36}

=\sqrt{100}

=10

Therefore s=10 units

The distance between the given points (2,10) and (-6, 4) on the coordinate plane is 10units

5 0
3 years ago
Other questions:
  • I need help ASAP answers 0.5<br> 8<br> 40<br> 45
    14·1 answer
  • In circle O, the radius is 8 and the m angle D O G = 95°. Find the length of arc DG
    8·2 answers
  • Solve the equation x+0.7=1-0.2x In two different ways
    7·1 answer
  • Find the following for the function f(x)=3x2+2x−2. (a) f(0) =
    13·1 answer
  • Blake and his children went into a bakery and where they sell donuts for $1.50 each and cookies for $0.50 each. Blake has $15 to
    6·1 answer
  • 8. 6x² – x-2=y<br> Write in intercept form set y=0 n solve
    8·1 answer
  • Please help and answer this wueastion will give u brainly
    10·1 answer
  • Num.4 (Please help me out)
    12·2 answers
  • What is the multiplicative inverse of the number 5?
    13·1 answer
  • Whats the solution of 4-|x| = 1
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!