1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
klasskru [66]
3 years ago
12

Question is in picture

Mathematics
1 answer:
Marta_Voda [28]3 years ago
7 0

|2x|\geq1\\\\2x\ge1 \ \ \text{or} \ \ 2x\leq-1\\\\\huge\boxed{x\geq\frac{1}{2} \ \ \text{or} \ \ x\leq-\frac{1}{2}}

You might be interested in
0.3 is ten times as what
Flauer [41]

0.03  * 10 = 0.3

Hope this helps you! ;)

6 0
3 years ago
Read 2 more answers
PLEASE HELP I NEED THIS I AM GIVING LOTS OF POINTS!!!!!!!!!!! How many 1/3 inch cubes does it take to fill a box with width 2 2/
maria [59]
<h3>Answer:  560</h3>

===================================================

Work Shown:

Let's find out how many smaller cubes are needed to go along the 2 & 2/3 inch side length of the bigger box.

First convert to an improper fraction

2 & 2/3 = 2 + 2/3 = 6/3 + 2/3 = 8/3

Divide this over the side length of the small cube to get

8/3 divided by 1/3 = (8/3)*(3/1) = 24/3 = 8

So we need exactly 8 small cubes along the 2 & 2/3 inch side length.

Let A = 8 so we can use this later.

------------------

Repeat the same steps for the 3 & 1/3 inch side length

3 & 1/3 = 3 + 1/3 = 9/3 + 1/3 = 10/3

10/3 divided by 1/3 = (10/3)*(3/1) = 30/3 = 10

We need 10 cubes along the 3 & 1/3 inch side length.

Let B = 10.

------------------

Repeat for the 2 & 1/3 inch side length

2 & 1/3 = 2 + 1/3 = 6 + 1/3 = 7/3

7/3 divided by 1/3 = (7/3)*(3/1) = 21/3 = 7

We need 7 cubes along the 2 & 1/3 inch side length

Let C = 7

------------------

Multiply out the values of A,B,C to get

A*B*C = 8*10*7 = 560

This means we need 560 cubes that are each 1/3 of an inch along the the side to fill up a box that has dimensions of 2 & 2/3 inches by 3 & 1/3 inches by 2 & 1/3 inches.

5 0
3 years ago
Prove
Dennis_Churaev [7]

\frac{ \sin(a) -  \cos(a)  + 1 }{ \sin(a) +  \cos(a)  - 1 }  =  \\

____________________________________________

\frac{ \sin(a) -  \cos(a)  + 1 }{ \sin(a) +  \cos(a) - 1  }  \times  \frac{ \sin(a)  +  \cos(a)  + 1}{ \sin(a) +  \cos(a) + 1 }  =

\frac{ {sin}^{2}(a) + 2 \sin(a)  -  {cos}^{2} (a) + 1 }{ {sin}^{2}(a) + 2 \sin(a) \cos(a)  +  {cos}^{2}(a) - 1   }  =

_____________________________________________

As you know :

{sin}^{2} (a) +  {cos}^{2} (a) = 1

_____________________________________________

\frac{ {sin}^{2} (a) -  {cos}^{2}(a) + 2 \sin(a)   + 1}{ {sin}^{2} (a) +  {cos}^{2}(a) - 1 + 2 \sin(a)  \cos(a)  }  =

\frac{ {sin}^{2}(a) - (1 -  {sin}^{2}(a)) + 2 \sin(a) + 1   }{1 - 1 + 2 \sin(a)  \cos(a) }  =

\frac{ {sin}^{2} (a) +  {sin}^{2} (a) - 1 + 1 + 2 \sin(a) }{2 \sin(a) \cos(a)  }  =

\frac{2 {sin}^{2}(a) + 2 \sin(a)  }{2 \sin(a) \cos(a)  }  =

\frac{2 \sin(a)( \sin(a)  + 1) }{2 \sin(a)( \cos(a) \:  ) }  =  \\

\frac{ \sin(a)  + 1}{ \cos(a) }  \\

And we're done...

Take care ♡♡♡♡♡

6 0
2 years ago
Sucesión II: 3, 7, 11, 15, 19, 23 ... ¿Cual es la expresión algebraica que la genera? * x=4n-2 x= 4n-1 x=3n-2
LenaWriter [7]

Responder:

4n-1

Explicación paso a paso:

Dada la secuencia

3, 7, 11, 15, 19, 23 ..

El enésimo término si la secuencia se expresa como;

Tn = una + (n-1) d

a es el primer término = 3

n es el número de términos

d es la diferencia común = 7-3 = 11-7

d = 4

Sustituir

Tn = 3+ (n-1) (4)

Tn = 3 + 4n-4

Tn = 4n-1

Por lo tanto, el enésimo término de la secuencia es 4n-1

8 0
3 years ago
1/2 x + 3/4=1 please help me!
Kipish [7]
X=1/2 :)))))))))))))
8 0
3 years ago
Other questions:
  • 5°, 5¹, 5²
    9·2 answers
  • I need all the answers I suck at this
    12·1 answer
  • What is number 8.this is multistep inequalities with grouping symbols.
    5·1 answer
  • Can someone plz help me with this math equation!
    11·1 answer
  • Multiply and simplify<br> (x +1)3 x (x+1)4
    8·2 answers
  • What is 4/5 of 20.5?
    12·2 answers
  • Which of the following correctly shows the length of each radius, the point where the circles intersect, and the equation of the
    9·1 answer
  • 3 + (7 - 5with and exponent of 2) x 6
    8·1 answer
  • QUESTIONS
    9·2 answers
  • Given the function f(x) = 2x − 1 and the linear function g(x), which function has a greater value when x = 3?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!