Answer:
The correct answer is - 5 carbon compounds due to low to high intermolecular forces between their molecules.
Explanation:
Bottle C has gas in it and we know that alkane has carbon and hydrogen only which means they have a single sigma bond between them and very low intermolecular forces in between molecules and are present mostly at gaseous state. Thus, bottle C has alkane.
Alcohols have -OH group that can form rarely two pi bonds which means they have intermediate intermolecular force whereas acids have -cooH group with a high molecular force so bottle B with liquid is alcohol and A has acid.
1. V= 161
2. V = 37.3
<h3 /><h3>Further explanation </h3>
Charles's Law states that
<em>When the gas pressure is kept constant, the gas volume is proportional to the temperature </em>

1.

2.

Answer:
B. Lower than 100 °C because hydrogen sulfide has dipole-dipole interactions instead of hydrogen bonding.
Explanation:
Intermolecular bonds exists between seperate molecules or units. Their relative strength determines many physical properties of substances like state of matter, solubility of water, boiling point, volatility, viscosity etc. Examples are Van der waals forces, hydrogen bonds and crystal lattice forces.
In hydrogen sulfide, the intermolecular bond is a dipole-dipole attraction which is a type of van der waals attraction. It occurs as an attraction between polar molecules. These molecules line such that the positive pole of one molecule attracts the negative pole of another.
In water, the intermolecular bond is hydrogen bonds in which an electrostatic attraction exists between the hydrogen atom of one molecule and the electronegative atom of a neighbouring molecule.
Based on their relative strength:
Van der Waals forces < Hydrogen bonding forces < crystal lattice
This makes water boil at a higher temperature than hydrogen sulfide.
Answer:
1 - e, 2 - k, 3 - a, 4 - i, 5 - b,
Explanation:
The ratio of the amount of analyte in the stationary phase to the amount in the mobile phase. --- Retention factor.
Time it takes after sample injection into the column for the analyte peak to appear as it exits the column. -- Retention time
The process of extracting a component that is adsorbed to a given material by use of an appropriate solvent system. -- Elution
Measure of chromatographic column efficiency. The greater its value, the more efficient the column. -- Theoretical plate number
Gas, liquid, or supercritical fluid used to transport the sample in chromatographic separations. -- Mobile phase
Immiscible and immobile, it is packed within a column or coated on a solid surface. -- Stationary phase