I’m pretty sure the answer is D :)
Answer:
Electrons are far apart from the nucleus as we move down the group.
Explanation:
The ionization energy is the amount of energy which is necessary to remove an electron from an atom.
In an atom there exist a force of attraction at the center (nucleus). This is because of the positive charge which exists in the nucleus. This force of attraction is less felt as the distance between the electron and the proton increases. Hence the ionization energy increases as the number of shells increases for an atom. As we move down the group in the periodic table, the number of shells increases which implies a decrease in ionization energy.
it will expand as water moves into it.
The mass of sodium sulphate, Na₂SO₄, required to prepare the solution is 10.65 g
<h3>How to determine the mole of sodium sulphate Na₂SO₄</h3>
- Volume = 250 mL = 250 / 1000 = 0.25 L
- Molarity = 0.3 M
Mole = Molarity x Volume
Mole of Na₂SO₄ = 0.3 × 0.25
Mole of Na₂SO₄ = 0.075 mole
<h3>How to determine the mass of sodium sulphate Na₂SO₄</h3>
- Molar mass of Na₂SO₄ = 142.05 g/mol
- Mole of Na₂SO₄ = 0.075 mole
Mass = mole × molar mass
Mass of Na₂SO₄ = 0.075 × 142.05
Mass of Na₂SO₄ = 10.65 g
Thus, 10.65 g of Na₂SO₄ is needed to prepare the solution.
Learn more about molarity:
brainly.com/question/15370276
We can use combined gas laws to solve for the volume of the gas

where P - pressure, V - volume , T - temperature and k - constant

parameters for the first instance are on the left side and parameters for the second instance are on the right side of the equation
T1 - temperature in Kelvin - 20 °C + 273 = 293 K
T2 - 40 °C + 273 = 313 K
substituting the values

V = 17.8 L
volume of the gas is 17.8 L