Answer:
y intercept is 10 and slope is 2
Step-by-step explanation:
Answer:
ur not dumb dw
Step-by-step explanation:
a) 5/6x+8
b)-3/4x-2
Answer:
f I used to know this one
Answer:
1963.2 pounds (lbs.)
Step-by-step explanation:
Things to understand before solving:
- - <u>Normal Probability Distribution</u>
- The z-score formula can be used to solve normal distribution problems. In a set with mean ц and standard deviation б, the z-score of a measure X is given by:

The Z-score reflects how far the measure deviates from the mean. After determining the Z-score, we examine the z-score table to determine the p-value associated with this z-score. This p-value represents the likelihood that the measure's value is less than X, or the percentile of X. Subtracting 1 from the p-value yields the likelihood that the measure's value is larger than X.
- - <u>Central Limit Theorem</u>
- The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean ц and standard deviation б , the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean ц and standard deviation

As long as n is more than 30, the Central Limit Theorem may be applied to a skewed variable. A specific kind of steel cable has an average breaking strength of 2000 pounds, with a standard variation of 100 pounds.
This means, ц = 2000 and б = 100.
A random sample of 20 cables is chosen and tested.
This means that n = 20, 
Determine the sample mean that will exclude the top 95 percent of all size 20 samples drawn from the population.
This is the 100-95th percentile, or X when Z has a p-value of 0.05, or X when Z = -1.645. So 
- By the Central Limit Theorem


<h3>Answer:</h3>
The sample mean that will cut off the top 95% of all size 20 samples obtained from the population is 1963.2 pounds.
Let P be Brandon's starting point and Q be the point directly across the river from P.
<span>Now let R be the point where Brandon swims to on the opposite shore, and let </span>
<span>QR = x. Then he will swim a distance of sqrt(50^2 + x^2) meters and then run </span>
<span>a distance of (300 - x) meters. Since time = distance/speed, the time of travel T is </span>
<span>T = (1/2)*sqrt(2500 + x^2) + (1/6)*(300 - x). Now differentiate with respect to x: </span>
<span>dT/dx = (1/4)*(2500 + x^2)^(-1/2) *(2x) - (1/6). Now to find the critical points set </span>
<span>dT/dx = 0, which will be the case when </span>
<span>(x/2) / sqrt(2500 + x^2) = 1/6 ----> </span>
<span>3x = sqrt(2500 + x^2) ----> </span>
<span>9x^2 = 2500 + x^2 ----> 8x^2 = 2500 ---> x^2 = 625/2 ---> x = (25/2)*sqrt(2) m, </span>
<span>which is about 17.7 m downstream from Q. </span>
<span>Now d/dx(dT/dx) = 1250/(2500 + x^2) > 0 for x = 17.7, so by the second derivative </span>
<span>test the time of travel, T, is minimized at x = (25/2)*sqrt(2) m. So to find the </span>
<span>minimum travel time just plug this value of x into to equation for T: </span>
<span>T(x) = (1/2)*sqrt(2500 + x^2) + (1/6)*(300 - x) ----> </span>
<span>T((25/2)*sqrt(2)) = (1/2)*(sqrt(2500 + (625/2)) + (1/6)*(300 - (25/2)*sqrt(2)) = 73.57 s.</span><span>
</span><span>
</span><span>
</span><span>
</span><span>mind blown</span>