2.5X20=50g
50g should be the right answer
Mass=volumeXdenisty.
Answer:
20 L of Cl₂
Solution:
The reaction is as follow,
H₂C₂ + 2 Cl₂ → H₂C₂Cl₄
According to equation,
167.84 g (1 mole) H₂C₂Cl₄ is produced by = 44.8 L (2 mole) of Cl₂
So,
75 g of H₂C₂Cl₄ will be produced by = X L of Cl₂
Solving for X,
X = (44.8 L × 75 g) ÷ 167.84 g
X = 20 L of Cl₂
<span>(a) what is the average volume (in cubic meters) required for each iron atom
For this case, the density of Iron would be </span>7.87g/cm³
<span>
V = 9.27 x 10^-26 kg / </span>7.87g/cm<span>³ ( 1 kg / 1000 g)
</span>V = 1.18 x 10-23 cm³<span>
(b) what is the distance (in meters) between the centers of adjacent atoms?
We assume the atoms as cube, so we use the volume of the cube to calculate the distance of the atoms.
V = </span>1.18 x 10-23 cm<span>³ = s</span>³
s = 2.28 x 10^-8 cm
Answer:
D
Explanation:
Gamma radiation penetrates the cell wall of prokaryotic organisms such as bacteria and can inhibit their metabolic functions as well as destroy their DNA.
Debunking the other answers:
A is incorrect as Gamma radiation is used in the treatment of cancer via radiotherapy.
B is incorrect as Gamma rays are too small and would just penetrate any smoke particles.
C is incorrect because Gamma rays are used to disinfect food products to prevent food borne illness. Irradiation is safe to use on food and does not make it radioactive.
Thus, D is correct.
Chemical reactions are basically divided into two major classes depending on whether the reaction lose energy or gain energy from the environment during the course of the reaction. The two classes of reaction are exothermic and endothermic reaction.
An exothermic reaction is a type of reaction in which the reaction system lose energy to the environment and thus, the energy content of the reactants is more than that of the product formed. Because of this, the enthapyl change of an exothermic reaction is always negative.
An endothermic reaction is a type of reaction in which the reaction system absorb energy from the environment. Thus, the energy contents of the products is always higher than that of the reactants and the enthapyl change of the reaction is always positive. During the course of the reaction, the reaction container is usually cold to the touch because energy is been absorbed from the environment.