Answer:
Energy is stored in <u>glucose</u> molecules <u>C6H12O6</u>
<u />
Explanation:
Producers make sugars stored as monomers bonded together to form polysaccharides, long chain hydrocarbon molecules as a result of the process of <u>photosynthesis</u>. These molecules, like the monosaccharide glucose, store converted solar energy as stable chemical energy in covalent bonds. In covalent bonding, the elements share electrons with each other.
These high-energy bonds are stable and not easily destabilized or broken. The energy is retrieved the the process of respiration in the mitochondria.
Glucose is broken down, while energy is transferred to bonds between ADP and inorganic phosphate, to produce ATP (adenosine triphosphate).
Eg. for aerobic respiration...
C6H12O6 (glucose) + 6 O2 → 6 CO2 + 6 H2O + ≅38 ATP
glucose+ oxygen → carbon dioxide+ water+ energy
Answer:
Mutations during meiosis can often lead to disorders, diseases, etc.
Explanation:Let's say that one of the tetrads formed in the first steps of meiosis It doesn't separate and goes on.
When making gametes, some will contain the necessary amount of chromosomes while others will not
Out of the options I would have to say Penetrating Keratoplasty, I am not sure
Answer:
Burning fossil fuels spits out carbon dioxide into the air faster than photosynthesis and other processes can scrub it back out.
Explanation:
It is the Hypertonic Side. Osmosis applies a weight known as osmotic weight on the hypertonic side of a specifically porous film.
This implies osmotic weight should deliver a net development of water into a run of the mill cell that is encompassed by new water. On the off chance that that happens, the volume of a cell will increment until the point when the cell ends up plainly swollen. In the end, the cell may blast like an overinflated expand.