Answer:
(a)96.77%
(b)3.23%
Step-by-step explanation:
Starting with the Michaelis-Menten equation which is used to model biochemical reactions:
Dividing both sides by 
![\dfrac{v}{V_{max}}=\dfrac{[S]}{K_M + [S]}](https://tex.z-dn.net/?f=%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B%5BS%5D%7D%7BK_M%20%2B%20%5BS%5D%7D)
Where:
maximum rate achieved by the system
=The Michaelis constant
Substrate concentration
(a) When ![[S]=30K_M](https://tex.z-dn.net/?f=%5BS%5D%3D30K_M)
![\dfrac{v}{V_{max}}=\dfrac{[S]}{K_M + [S]}\\\dfrac{v}{V_{max}}=\dfrac{30K_M}{K_M + 30K_M}\\\dfrac{v}{V_{max}}=\dfrac{30}{1 + 30}\\\dfrac{v}{V_{max}}=\dfrac{30}{31}\\$Expressed as a percentage\\\dfrac{v}{V_{max}}=\dfrac{30}{31}X100=96.77\%](https://tex.z-dn.net/?f=%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B%5BS%5D%7D%7BK_M%20%2B%20%5BS%5D%7D%5C%5C%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B30K_M%7D%7BK_M%20%2B%2030K_M%7D%5C%5C%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B30%7D%7B1%20%2B%2030%7D%5C%5C%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B30%7D%7B31%7D%5C%5C%24Expressed%20as%20a%20percentage%5C%5C%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B30%7D%7B31%7DX100%3D96.77%5C%25)
(b)When ![K_M=30[S]](https://tex.z-dn.net/?f=K_M%3D30%5BS%5D)
![\dfrac{v}{V_{max}}=\dfrac{[S]}{K_M + [S]}\\\dfrac{v}{V_{max}}=\dfrac{[S]}{30[S] + [S]}\\\\=\dfrac{1[S]}{30[S] + 1[S]}\\=\dfrac{1}{30 + 1}\\\dfrac{v}{V_{max}}=\dfrac{1}{31}\\$Expressed as a percentage\\\dfrac{v}{V_{max}}=\dfrac{1}{31}X100=3.23\%](https://tex.z-dn.net/?f=%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B%5BS%5D%7D%7BK_M%20%2B%20%5BS%5D%7D%5C%5C%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B%5BS%5D%7D%7B30%5BS%5D%20%2B%20%5BS%5D%7D%5C%5C%5C%5C%3D%5Cdfrac%7B1%5BS%5D%7D%7B30%5BS%5D%20%2B%201%5BS%5D%7D%5C%5C%3D%5Cdfrac%7B1%7D%7B30%20%2B%201%7D%5C%5C%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B1%7D%7B31%7D%5C%5C%24Expressed%20as%20a%20percentage%5C%5C%5Cdfrac%7Bv%7D%7BV_%7Bmax%7D%7D%3D%5Cdfrac%7B1%7D%7B31%7DX100%3D3.23%5C%25)
When the diagonals of a quadrilateral are perpendicular, the area of that quadrilateral is half the product of their lengths.
.. A = (1/2)*d₁*d₂
Substituting the given information, this becomes
.. 58 in² = (1/2)*(14.5 in)*d₂
.. 2*58/14.5 in = d₂ = 8 in
The length of diagonal BD is 8 in.
Answer:
Step-by-step explanation:
Join A and C and B and D. And add numbers to the angles formed on one of the diagonal
In triangles ABC and ADC,
Angle 1 = Angle 4
Angle 3 = Angle 2
AC = AC
Therefore, triangle ABC=ADC
Since, ABC=ADC
Similarly, triangle ABD= triangle CDB
Therefore, AB=CD and BC=DA
Answer:
(plus = +)
<h2>4 + 4 = 8</h2>
-,-
Step-by-step explanation:
<h2>Hope it helps! </h2>
Well you basically use rise/run so basically you choose two points on the line and you count how many squares it goes up until its on the same line as the other point and then you count how many squares to the side to get to the other point so rise/run ill explain it a lil better