Barium has a 2+ charge as it is in group 2 in the periodic table and so it has two electrons in its outer shell and chloride has a -1 charge on its chloride ion. So we will need two of the chloride ions as we have a 2+ charge to match the amount of charge on one barium ion- forming barium ion
BaCI2
No, they can have potential energy
V ( H2SO4) = 35 mL / 1000 => 0.035 L
M ( H2SO4) = ?
V ( NaOH ) = 25 mL / 1000 => 0.025 L
M ( NaOH ) = 0.320 M
number of moles NaOH:
n = M x V
n = 0.025 x 0.320 => 0.008 moles of NaOH
Mole ratio:
<span>2 NaOH + H2SO4 = Na2SO4 + 2 H2O
</span>
2 moles NaOH ---------------------- 1 mole H2SO4
0.008 moles moles NaOH ---------- ??
0.008 x 1 / 2 => 0.004 moles of H2SO4 :
Therefore:
M ( H2SO4) = n / V
M = 0.004 / 0.035
= 0.114 M
hope this helps!
<span>The superscripts in an electron configuration represents the number of electrons and protons in an element. </span>
The answer is: C. 0.00427 m.
A) 1 km = 1000000 mm.
d = 0.0000427 km · 1000000 mm/km.
d = 47.7 mm.
B) 1 hm = 100000 mm.
d = 0.000427 hm · 100000 mm/hm.
d = 42.7 mm.
C) 1 m = 1000 mm.
d = 0.00427 m · 1000 mm/m.
d = 4.27 mm.
D) 1 cm = 10 mm.
d = 4.27 cm · 10 mm/cm.
d = 42.7 mm.
Millimeter (abbreviated: mm, a thousandth part of metar) is an unit of distance in the metric system.