Answer:
11.8.4 Distillation Columns
Distillation columns present a hazard in that they contain large inventories of flammable boiling liquid, usually under pressure. There are a number of situations which may lead to loss of containment of this liquid.
The conditions of operation of the equipment associated with the distillation column, particularly the reboiler and bottoms pump, are severe, so that failure is more probable.
The reduction of hazard in distillation columns by the limitation of inventory has been discussed above. A distillation column has a large input of heat at the reboiler and a large output at the condenser. If cooling at the condenser is lost, the column may suffer overpressure. It is necessary to protect against this by higher pressure design, relief valves, or HIPS. On the other hand, loss of steam at the reboiler can cause underpressure in the column. On columns operating at or near atmospheric pressure, full vacuum design, vacuum breakers, or inert gas injection is needed for protection. Deposition of flammable materials on packing surfaces has led to many fires on opening of distillation column for maintenance.
Another hazard is overpressure due to heat radiation from fire. Again pressure relief devices are required to provide protection.
The protection of distillation columns is one of the topics treated in detail in codes for pressure relief such as APIRP 521. Likewise, it is one of the principal applications of trip systems.
Another quite different hazard in a distillation column is the ingress of water. The rapid expansion of the water as it flashes to steam can create very damaging overpressures.
hydrogen and carbon, hope that helped
Answer: increasing number of protons increases the positive charge of the nucleus.
Explanation: because as the electronegativity moves from left to right on the periodic table the protons do increase to make it into a positive charge.
Answer:
Negligible
Explanation:
According to the kinetic theory of gases, the degree of intermolecular interaction between gases is minimal and gas molecules tend to spread out and fill up the volume of the container.
If the attraction between gas molecules increases, then the volume of the gas decreases accordingly. This is because, gas molecules become highly attracted to each other.
This intermolecular attractive force may be so strong, such that the actual volume of the gas become negligible compared to the volume of the container.
Answer:
Explanation:
Any system within the Earth system is considered an open system. Because energy flows freely into and out of systems, all systems respond to inputs and, as a result, have outputs.