1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
skelet666 [1.2K]
3 years ago
9

The Green family is a family of six people. They have used 4,885.78 gallons of water so far this month. They cannot exceed 9,750

.05 gallons per month during drought season. Write an inequality to show how much water just one member of the family can use for the remainder of the month, assuming each family member uses the same amount of water every month.
6x − 4,885.78 ≤ 9,750.05
6x − 4,885.78 ≥ 9,750.05
6x + 4,885.78 ≤ 9,750.05
6x + 4,885.78 ≥ 9,750.05
Mathematics
1 answer:
IRINA_888 [86]3 years ago
7 0

Answer:

C. 6x+4885.78<9750.05

=

Step-by-step explanation:

You might be interested in
7 (2.268- 2.036) ? answer I need help
Arisa [49]
The answer to this question is 1.624
3 0
2 years ago
Read 2 more answers
12.4. Measure of Dispersion<br>2076 Q.No. 15 Find the standard deviation of: 4, 6, 8, 10, 12.​
Alenkinab [10]

Answer:

Standard deviation of given data = 3.16227

Step-by-step explanation:

<u><em>Step(i)</em></u>:-

Given sample size 'n' = 5

Given data  4, 6,8,10,12

Mean = \frac{4+6+8+10+12}{5} = 8

Mean of the sample x⁻ = 8

Standard deviation of the sample

                  S.D = \sqrt{\frac{Sum(x-x^{-} )^{2} }{n-1}}

<u><em>Step(ii)</em></u>:-

Given data

x          :         4      6       8       10      12

x-x⁻      :      4 - 8   6-8   8-8    10-8    12-8

(x-x⁻)   :        -4      -2     0          2        4

(x-x⁻)²  :        16     4       0         4        16  

 

  S.D = \sqrt{\frac{Sum(x-x^{-} )^{2} }{n-1}}

  S.D = \sqrt{\frac{16+4+0+4+16}{4}}

 S.D = √10 = 3.16227

<u><em> Final answer</em></u>:-

The standard deviation = 3.16227

8 0
3 years ago
Suppose the interval ​[negative 3−3​,negative 1−1​] is partitioned into nequals=44 subintervals. What is the subinterval length
Kobotan [32]

Answer: Δx​ = 0.5

Step-by-step explanation:

We have the interval:

​[−3​, −1​]

and we partition it into 4 equal intervals.

first, the range of our interval is equal to the difference between the extremes, this is:

-1 - (-3) = -1 + 3 = 2

Then, if we divide it into 4, we have 4 segments with a range of:

2/4 = 0.5

Then the subinterval delta is 0.5, and the 4 intervals are:

​[−3​, -2.5​],  ​[−2.5, −2​],  ​[−2​, −1.5​],  ​[−1.5, −1​]

6 0
3 years ago
Solve for x: 12-2x=-2(y-x)
a_sh-v [17]
12 - 2x = -2(y - x)

12 - 2x = -2y - (-2x)

12 - 2x = -2y + 2x

12 - 2x - 2x = -2y + 2x - 2x

12 - 4x = -2y

12 - 12 - 4x = -2y - 12

-4x = -2y - 12

-4x/4 = -2y/4 - 12/4

-x = -0.5y - 3

-x/-1 = -0.5y/-1 - 3/-1

x = 0.5y + 3

or

x = 3 + 0.5y
3 0
3 years ago
The slope of the line tangent to the curve y^2 + (xy+1)^3 = 0 at (2, -1) is ...?
Lina20 [59]
\frac{d}{dx}(y^2 + (xy+1)^3 = 0)&#10;\\&#10;\\\frac{d}{dx}y^2 + \frac{d}{dx}(xy+1)^3 = \frac{d}{dx}0&#10;\\&#10;\\\frac{dy}{dx}2y + \frac{d}{dx}(xy+1)\ *3(xy+1)^2 = 0&#10;\\&#10;\\\frac{dy}{dx}2y + \left(\frac{d}{dx}(xy)+\frac{d}{dx}1\right)\ * 3(xy+1)^2 = 0&#10;\\&#10;\\\frac{dy}{dx}2y + \left(\frac{d}{dx}xy+x\frac{d}{dx}y+\frac{dx}{dx}\right)\ * 3(xy+1)^2 = 0&#10;\\&#10;\\\frac{dy}{dx}2y + \left(\frac{dx}{dx}y+x\frac{dy}{dx}+\frac{dx}{dx}0\right)\ * 3(xy+1)^2 = 0&#10;\\&#10;\\\frac{dy}{dx}2y + \left(y+x\frac{dy}{dx}\right)\ * 3(xy+1)^2 = 0
\frac{dy}{dx}2y + \left(y+x\frac{dy}{dx}\right)\ * 3(xy+1)^2 = 0&#10;\\&#10;\\\frac{dy}{dx}2y + \left(3y+3x\frac{dy}{dx}\right)  (xy+1)^2 = 0&#10;\\&#10;\\2y\ y' + \left(3y+3x\ y'\right)  (xy+1)^2 = 0&#10;\\&#10;\\2y\ y' + \left(3y+3x\ y'\right)  ((xy)^2+2xy+1) = 0&#10;\\&#10;\\2y\ y' + \left(3y+3x\ y'\right)  ((xy)^2+2xy+1) = 0&#10;\\&#10;\\2y\ y' + 3x^2y^3 +6xy^2+3y+(3x y' +6x^2y y'+3x^2y y') = 0&#10;\\&#10;\\3x^2y^3 +6xy^2+3y+(3x y' +6x^2y y'+3x^2y y'+2yy' ) = 0&#10;\\&#10;\\y'(3x +6x^2y+3x^2y+2y ) = -3x^2y^3 -6xy^2-3y&#10;&#10;
y' = \frac{-3x^2y^3 -6xy^2-3y}{(3x +6x^2y+3x^2y+2y )};\ x=2,y=-1&#10;\\&#10;\\y' = \frac{-3(2)^2(-1)^3 -6(2)(-1)^2-3(-1)}{(3(2) +6(2)^2(-1)+3(2)^2(-1)+2(-1) )}&#10;\\&#10;\\y' = \frac{-3(4)(-1) -6(2)(1)+3}{(6 +6(4)(-1)+3(4)(-1)-2 )}&#10;\\&#10;\\y' = \frac{12 -12+3}{(6 -24-12-2 )}&#10;\\&#10;\\y' = \frac{3}{( -32 )}

7 0
3 years ago
Other questions:
  • How on the earth do you do this ????
    7·2 answers
  • 0.5 miles = 2,640 feet
    14·1 answer
  • Select the three expressions that are equivalent to 6^{2}6 2 6, squared. a: (6^9/6^8)^2 b: 6 times 6 times 6 times 6 times 6 tim
    9·2 answers
  • What is the value of x?<br><br><br> What is the value of y?
    12·1 answer
  • What is the midpoint of a line segment at the origin (0,0) and its end points at (-5,-12)
    12·1 answer
  • What number is 3 u it’s to the left of 6 on the number line?
    11·1 answer
  • A line with a slope of 0.20 passes through
    12·1 answer
  • Please HELPP with this question
    6·2 answers
  • What is true about the hypotenuse?
    8·2 answers
  • Prism A and Prism B have the same volume. Which could be the dimensions of prism B?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!