The equation of the line is y=2/3x + 0
Explanation: The y intercept (where the line crosses the y axis) is 0, and the slope is 2/3 (up two and 3 to the right)
We are given the following data: <span>x = 2t, y = t + 5, -2 ≤ t ≤ 3. The data is valid since there are three unknowns in this problem and that three equations would suffice to answer the problem.
We start with the given </span>-2 ≤ t ≤ 3 then substitute y = t +5 by using the limits of the range:
at t = -2 ; y = -2 + 5 = 3
at t = 3, y = 3+5 = 8
for the second equation
at t = -2 ; x = 2*-2 =-4
at t=3; x = 2*3 = 6
we group the points based on their original corresponding t's
(3,-4) and (8,6) we just have to connect these points along with the internal points in between. The relationship should be linear.
Answer:
The cross section will be an isosceles triangle
Step-by-step explanation:
The picture of the question in the attached figure N 1
we know that
If a plane passes through the axis of rotation of the cone, then the resultant cross-section will be a triangle with one vertex as the vertex of the cone and the two sides of the triangle through the vertex A will be equal.
Where the base of the triangle will be equal to the diameter of the circular base of cone and the two congruent sides of triangle will be equal to the slant height of the cone
therefore
The cross section will be an isosceles triangle
The one day pay is $106.25 rounded to the nearest hundredth.
<u>Step-by-step explanation:</u>
<u>From the table shown :</u>
- The timing shown in the morning is from 8:00 to 12:15
- The number of hours worked in the morning = 4 hours 15 minutes.
It is given that, the pay is $12.5 per hour.
Therefore, the pay earned in the morning = No.of hours × pay per hour.
⇒ 4 hours × 12.5 = $50
⇒ (15 mins / 60 mins) × 12.5 = $3.125
⇒ 50+3.125
⇒ 53.125
- The timing shown in the afternoon is from 8:00 to 12:15
- The number of hours worked in the morning = 4 hours 15 minutes.
Therefore, the pay earned in the afternoon = No.of hours × pay per hour.
⇒ 4 hours × 12.5 = $50
⇒ (15 mins / 60 mins) × 12.5 = $3.125
⇒ 50+3.125
⇒ 53.125
The pay for 1 day = pay earned in the morning section + pay earned in the afternoon section.
⇒ 53.125 + 53.125
⇒ 106.25
∴ The one day pay is $106.25 rounded to the nearest hundredth.
Answer:
1/hour =9$
For 12 hours she makes 108$