Let l = Q/L = linear charge density. The semi-circle has a length L which is half the circumference of the circle. So w can relate the radius of the circle to L by
<span>C = 2L = 2*pi*R ---> R = L/pi </span>
<span>Now define the center of the semi-circle as the origin of coordinates and define a as the angle between R and the x-axis. </span>
<span>we can define a small charge dq as </span>
<span>dq = l*ds = l*R*da </span>
<span>So the electric field can be written as: </span>
<span>dE =kdq*(cos(a)/R^2 I_hat + sin(a)/R^2 j_hat) </span>
<span>dE = k*I*R*da*(cos(a)/R^2 I_hat + sin(a)/R^2 j_hat) </span>
<span>E = k*I*(sin(a)/R I_hat - cos(a)/R^2 j_hat) </span>
<span>E = pi*k*Q/L(sin(a)/L I_hat - cos(a)/L j_hat)</span>
Answer:
Inducted Magnetic field will be toward from you
Inducted current direction will be counter clockwise.
Explanation:
Lenz's law states that the direction of the current induced in a wire by a changing magnetic field is such that the magnetic field created by the induced current opposes the initial changing magnetic field.
So if the field begins to decrease, the induced magnetic field would try to stop this, so its direction will be the same as the magnetic field, toward from you.
This induced magnetic field is produced by the current in the wire. If the inducted magnetic field will be toward you, the right hand rule says that the direction from the inducted current will be counter clockwise.
Answer:
Vertical Height = 0.784 meter, Speed back at starting point = 10 m/s
Explanation:
Given Data:
V is the overall velocity vector,
and
are its initial vertical and horizontal components

To find:
Max Height
achieved
Calculation:
1) Using the
equation of motion, we know

2) In terms of gravity
height
and the vertical component of Velocity
.
3) As
as at maximum height the vertical component of velocity is zero maximum height achieved

putting values
4) 
5) As for the speed when it reaches back its starting point, it will have a speed similar to its launching speed, the reason being the absence of air friction (Air drag)
Answer:
C) Turbines
Explanation:
C. because as the water flows, its kinetic energy is used to turn a turbine.