Answer
given,
L(t) = 10 - 3.5 t
mass of particle = 2 Kg
radius of the circle = 3.1 m
a) torque
τ = 
τ = 
τ = -3.5 N.m
Particle rotates clockwise as i look down the plane. Hence, its angular velocity is downward.
L decreases the angular acceleration upward. so, net torque is upward.
b) Moment of inertia of the particle
I = m R^2
I = 2 x 3.1²
I = 19.22 kg.m²
L = I ω
ω = 
ω = 
ω = 
A = 0.52 rad/s B = -0.182 rad/s²
Answer:
- 273.77 rad/s^2
Explanation:
fo = 3800 rev/min = 3800 / 60 rps = 63.33 rps
f = 0
ωo = 2 π fo = 2 x 3.14 x 63.33 = 397.71 rad/s
ω = 2 π f = 0
θ = 46 revolutions = 46 x 2π radian = 288.88 radian
Let α be the angular acceleration of the centrifuge
Use third equation of motion for rotational motion


α = - 273.77 rad/s^2