Answer:
60*12.0= 720 = v/60 * 12.0 squared which is 1,728
Explanation:
Horizontal velocity component: Vx = V * cos(α)
If you increase the mass of an object and want to move an object a specific distance, then you need to do extra work than the earlier
<h3>What is work done?</h3>
The total amount of energy transferred when a force is applied to move an object through some distance
Work Done = Force * Displacement
For example, let us suppose a force of 10 N is used to displace an object by a displacement of 5 m then the work done on the object can be calculated by the above-mentioned formula
work done = 10 N ×5 m
=50 N m
Thus, when an object's mass is increased and it is desired to move it a certain distance, more work must be done than previously.
Learn more about work done from here
brainly.com/question/13662169
#SPJ1
Answer:
magnitude: 21.6; direction: 33.7 degrees
Explanation:
When we multiply a vector by a scalar, we have to multiply each component of the vector by the scalar number. In this case, we have
vector: (-3,-2)
Scalar: -6
so the vector multiplied by the scalar will have components

The magnitude is given by Pythagorean's theorem:

and the direction is given by the arctan of the ratio between the y-component and the x-component:

Answer:
Voltage-gated calcium ion channels open, and calcium ions diffuse into the cell
Answer
given,
v = 128 ft/s
angle made with horizontal = 30°
now,
horizontal component of velocity
vx = v cos θ = 128 x cos 30° = 110.85 ft/s
vertical component of velocity
vy = v sin θ = 128 x sin 30° = 64 m/s
time taken to strike the ground
using equation of motion
v = u + at
0 =-64 -32 x t
t = 2 s
total time of flight is equal to
T = 2 t = 2 x 2 = 4 s
b) maximum height
using equation of motion
v² = u² + 2 a h
0 = 64² - 2 x 32 x h
64 h = 64²
h = 64 ft
c) range
R = v_x × time of flight
R = 110.85 × 4
R = 443.4 ft