Answer:

Explanation:
Hello!
In this case for the solution you are given, we first use the mass to compute the moles of CuNO3:

Next, knowing that the molarity has units of moles over liters, we can solve for volume as follows:

By plugging in the moles and molarity, we obtain:

Which in mL is:

Best regards!
I would maybe say solid at higher temps
Answer:
613 mg
Explanation:

Number of fargday's 
Here, I = 9.20 A
t = 10.5 min
= 10.5 x 60 seconds
So, 

= 0.0208 F
Here, 2e, 2F
2F = 1 mol of Ni

1 mol = 59 gm of Ni
0.0104 mol = 59 x0.0104 gm Ni
= 0.613 gm Ni
= (0.613 x 1000 ) mg of Ni
= 613 mg of Ni
Answer:
True
Explanation:
Ex. People against vaccines tend to believe crazy theories over facts because they think they'll end up brainwashing them.
Answer:
The unknown solution had the higher concentration.
Explanation:
When two solutions are separated by a semi-permeable membrane, depending on the concentration gradient between the two solutions, there is a tendency for water molecules to move across the semi-permeable in order to establish an equilibrium concentration between the two solutions. This movement of water molecules across a semi-permeable membrane in response to a concentration gradient is known as osmosis. In osmosis, water molecules moves from a region of lower solute concentration or higher water molecules concentration to a region of higher solute concentration or lower water molecules concentration until equilibrium concentration is attained.
Based on the observation that when the glucose solution described in part A is connected to an unknown solution via a semipermeable membrane, the unknown solution level rises, it means that water molecules have passed from the glucose solution through the semipermeable membrane into the unknown solution. Therefore, the solution has a higher solute concentration than the glucose solution.