Answer:
27.22 dm³
Explanation:
Given parameters:
number of moles = 1 mole
temperature= 50°C, in K gives 50+ 273 = 323K
Pressure= 98.6kpa in ATM, gives 0.973 ATM
Solution:
Since the unknown is the volume of gas, applying the ideal gas law will be appropriate in solving this problem.
The ideal gas law is mathematically expressed as,
Pv=nRT
where P is the pressure of the gas
V is the volume
n is the number of moles
R is the gas constant
T is the temperature
Input the parameters and solve for V,
0.973 x V = 1 x 0.082 x 323
V= 27.22 dm³
C. losing one electron
Explanation:
It is because the potassium atom electronic configuration is 2,8,8,1 where by if it loses one electron it becomes stable
Answer:
six noble gases
Here are five of the six noble gases: helium, neon, argon, kypton and xeon. They're all colourless and transparent. Krypton and xeon form compounds only with difficulty. Helium, neon and argon don't form compounds at all.
Answer: 11.5 moles of carbon
Explanation:
Based on Avogadro's law:
1 mole of any substance has 6.02 x 10^23 atoms
So, 1 mole of carbon = 6.02 x 10^23 atoms
Z moles = 6.93 x 10^24 atoms
To get the value of Z, cross multiply:
(6.93 x 10^24 atoms x 1mole) = (6.02 x 10^23 atoms x Z moles)
6.93 x 10^24 = (6.02 x 10^23 x Z)
Z = (6.93 x 10^24) ➗ (6.02 x 10^23)
Z = 1.15 x 10
Z = 11.5 moles
Thus, there are 11.5 moles of carbon.
Answer:
See explanation
Explanation:
The central atom in the perbromate ion is bromine. The chemical symbol of bromine is Br. There are no lone pairs around the central bromine atom. The ion is tetrahedral in shape hence we expect a bond angle of 109°. 27 which is the ideal tetrahedral bond angle. The actual bond angle of the prebromate ion is 109.5°. The perbromate ion is BrO4^-
The observed bond angle is very close to the ideal value because of the absence of lone pairs of electrons from the central atom in the ion.