Answer:
Mass = 13.23 g
Explanation:
Given data:
Mass of oxygen = 48.0 g
Mass of propane burn = ?
Solution:
Chemical equation:
C₃H₈ + 5O₂ → 3CO₂ + 4H₂O
Number of moles of oxygen:
Number of moles = mass/molar mass
Number of moles = 48.0 g/ 32 g/mol
Number of moles = 1.5 mol
now we will compare the moles of propane and oxygen.
O₂ : C₃H₈
5 : 1
1.5 : 1/5×1.5 = 0.3 mol
Mass of propane burn:
Mass = number of moles × molar mass
Mass = 0.3 mol × 44.1 g/mol
Mass = 13.23 g
I am pretty sure the correct answer is B.
It makes the most sense to me.
Answer:
0.144M
Explanation:
First, let us write a balanced equation for the reaction. This is illustrated below:
HNO3 + KOH —> KNO3 + H20
From the equation,
nA = 1
nB = 1
From the question given, we obtained the following:
Ma =?
Va = 30.00mL
Mb = 0.1000M
Vb = 43.13 mL
MaVa / MbVb = nA/nB
Ma x 30 / 0.1 x 43.13 = 1
Cross multiply to express in linear form
Ma x 30 = 0.1 x 43.13
Divide both side by 30
Ma = (0.1 x 43.13) /30 = 0.144M
The molarity of the nitric acid is 0.144M
Answer: It can be written as: V = nRT/P. "P" is pressure, "V" is volume, n is the number of moles of a gas, "R" is the molar gas constant and "T" is temperature. Record the molar gas constant "R". R = 8.314472 J/mole x K.
Explanation: That the answer